

MOBILE ML INTERFACE DESIGNER
1
Mrs. K.V.Jhansi Rani, M.Tech, Assistant Professor, Department of CSE, Eluru College of Engineering And

Technology, Duggirala, Andhra Pradesh-534004.
2
N.V.V.N.S.Pardhu, B.Tech, Department of CSE, Eluru College of Engineering And Technology, Duggirala,

Andhra Pradesh-534004.
3 P.Akhil, B.Tech, Department of CSE, Eluru College of Engineering And Technology, Duggirala, Andhra Pradesh-

534004.
4
P.Chandrasekhar, B.Tech, Department of CSE, Eluru College of Engineering And Technology, Duggirala, Andhra

Pradesh-534004.
5
M.Yamini, B.Tech, Department of CSE, Eluru College of Engineering And Technology, Duggirala, Andhra

Pradesh-534004.

Abstract: This project presents an application for predicting JSON code from GUI screens using machine learning. We

upload the RICO dataset after it can preprocess images by resizing and normalizing pixel values. The dataset is then

shuffled and split into 80% training and 20% testing sets. A Convolutional Neural Network (CNN) ,Long Short-Term

Memory (LSTM) algorithms are trained and achieving 95% accuracy. A training graph visualizes CNN ,LSTM progress.

Users upload GUI screens to get code prediction, with results presented in JSON format.
1. INTRODUCTION
Most modern user-facing software applications are GUI-

centric, and rely on attractive user interfaces (UI) and

intuitive user experiences (UX) to attract customers,

facilitate the effective completion of computing tasks, and

engage users. Software with cumbersome or aesthetically

displeasing UIs are far less likely to succeed, particularly

as companies look to differentiate their applications from

competitors with similar functionality. This phenomena can

be readily observed in mobile application marketplaces

such as the App Store , or Google Play where many

competing applications (also known as apps) offering

similar functionality (e.g., task managers, weather apps)

largely distinguish themselves via UI/UX Thus, an

important step in developing any GUI-based application is

drafting and prototyping design mock-ups, which facilitates

the instantiation and experimentation of UIs in order to

evaluate or prove-out abstract design concepts. In industrial

settings with larger teams, this process is typically carried

out by dedicated designers who hold domain specific

expertise in crafting attractive, intuitive GUIs using image

editing software such as Photoshop or Sketch These teams

are often responsible for expressing a coherent design

language across the many facets of a company’s digital

presence, including websites, software applications and

digital marketing materials. Some components of this

design process also tend to carry over to smaller

independent development teams who practice design or

prototyping processes by creating wireframes or mock-ups

to judge design ideas before committing to spending

development resources implementing them. After these

initial design drafts are created it is critical that they are

faithfully translated into code in order for the end-user to

experience the design and user interface in its intended

form.

2. LITERATURE SURVEY

Shuffling and splitting datasets are crucial steps in machine

learning model training. Techniques such as random

shuffling and stratified splitting can ensure data

randomness and balance in train-test splits. Furthermore,

dataset normalization, including mean normalization and

feature scaling, can enhance model convergence and

performance by LeCun et al 1998. Preprocessing the

dataset involves tasks such as resizing, normalization, and

cleaning of data. Techniques like image resizing and

normalization can be performed using popular libraries

such as OpenCV or Pillow in Python . Moreover, data

cleaning methods like noise removal and outlier detection

may be applied to enhance dataset quality by Rousseeuw et

al 1999. Visualization of CNN training progress can aid in

understanding the model's learning behavior. Tools like

Matplotlib in Python can be used to plot training accuracy

and loss graphs during the training process Hunter 2007.

Visual inspection of these graphs helps in monitoring

model convergence and identifying overfitting or

underfitting issues. Convolutional Neural Networks

(CNNs) are widely used for image classification tasks.

Training CNNs involves forward and backward passes,

utilizing optimization algorithms like stochastic gradient

descent (SGD) or its variants. Evaluation metrics such as

accuracy, precision, and confusion matrices are employed

to assess the model's performance by Sokolova and

Lapalme 2009. Transfer learning, where a pre-trained CNN

model is fine-tuned for a specific task, can significantly

reduce training time and resource requirements. Pre-trained

models like VGG, ResNet, or MobileNet can be adapted to

new tasks by retraining only the final layers or a few

selected layers by Pan and Yang 2010. Transfer learning

has shown promising results in various image-related tasks.

Effective hyperparameter tuning is essential for optimizing

the performance of CNN models. Techniques such as grid

search, random search, or Bayesian optimization can be

employed to find the best combination of hyperparameters

such as learning rate, batch size, and optimizer settings by

Bergstra and Bengio 2012. 3 Predicting JSON code from

images involves utilizing CNNs for image recognition

tasks. Techniques such as transfer learning, where pre-

trained CNN models are fine-tuned for specific tasks, can

Journal of Engineering Sciences Vol 15 Issue 05,2024

ISSN:0377-9254 jespublication.com Page 603

be effective Yosinski et al 2014. Additionally, frameworks

like TensorFlow or PyTorch provide easy-to-use APIs for

deploying CNN models and making predictions. To upload

the RICO dataset, various methods and tools can be

employed. The use of Python libraries like requests or

urllib for downloading data from URLs and zipfile for

extracting files can be effective by Jones et al 2017.

Additionally, cloud storage services like Google Drive or

Dropbox APIs can also be utilized for seamless dataset

uploading. Data augmentation is crucial for increasing the

diversity of the training dataset, especially in image

classification tasks. Techniques such as rotation, flipping,

zooming, and cropping can be employed to generate

additional training samples by Shorten and Khoshgoftaar

2019. Augmenting the dataset helps prevent overfitting and

improves the generalization of the model. Graphical User

Interfaces (GUIs) play a vital role in deploying machine

learning models to end-users. Frameworks like Tkinter in

Python or Electron in JavaScript can be utilized to develop

user-friendly interfaces for model prediction applications

by Sparks et al 2020. GUIs simplify the interaction

between users and machine learning models, making them

more accessible and usable.

 3. EXISTING SYSTEM

In industrial mobile app development, mock-up artifacts

typically come in the form of high fidelity images (with or

without meta-data) created by designers using software

such as Photoshop or Sketch. In this scenario, depending

on design and development workflows, metadata

containing information about the constituent parts of the

mock-up images can be exported and parsed from these

artifacts. Independent developers may also use screenshots

of existing apps to prototype their own apps. In this

scenario, in addition to screenshots of running applications,

runtime GUI-information (such as the html DOM-tree of a

web app or the GUI hierarchy of a mobile app) can be

extracted to further aid in the prototyping process.

However, this is typically not possible in the context of

mock-up driven development (which our approach aims to

support), as executable apps do not exist.

DISADVANTAGES:

• Limited Interactivity: Mock-up artifacts lack interactive

elements, making it difficult to assess user interaction and

flow accurately.

• Time-Consuming Process: Creating high-fidelity images

using specialized software is time-consuming and can slow

down development.

• Dependency on Designers: Reliance on designers to

create mock-ups can lead to delays and communication

issues.

• Limited Realism: Mock-ups often lack realism, making it

hard to visualize the final product accurately.

• Difficulty in Prototyping Dynamic Elements: Extracting
runtime GUI-information for prototyping dynamic

elements is challenging and may not fully capture app

behavior.

4. PROPOSED SYSTEM

In industrial mobile app development, mock-up artifacts

typically come in the form of high fidelity images (with

or without meta-data) created by designers using software

such as Photoshop or Sketch. In this scenario, depending

on design and development workflows, metadata

containing information about the constituent parts of the

mock-up images can be exported and parsed from these

artifacts. Independent developers may also use

screenshots of existing apps to prototype their own apps.

In this scenario, in addition to screenshots of running

applications, runtime GUI-information (such as the html

DOM-tree of a web app or the GUI hierarchy of a mobile

app) can be extracted to further aid in the prototyping

process. However, this is typically not possible in the

context of mock-up driven development (which our

approach aims to support), as executable apps do not

exist.

ADVANTAGES:

• Interactive Prototypes: Get more realistic user
experiences with interactive elements, thanks to runtime

GUI-information.

• Faster Development: Speed up prototyping with real-
time feedback, making adjustments quicker and easier.

• Better Collaboration: Align prototypes closely with

design visions, fostering collaboration between designers
and developers.

• Realistic Previews: Provide stakeholders with more
accurate previews of the final product.

• Dynamic Features: Add dynamic elements like
animations for more engaging prototypes.

SYSTEM ARCHITECTURE9+

Fig1: System Architecture

5. UML DIAGRAMS

1. CLASS DIAGRAM

Class diagram is a static diagram. It represents the static

view of an application. Class diagram is not only used for

visualizing, describing, and documenting different aspects

of a system but also for constructing executable code of the

software application. Class diagram describes the attributes

and operations of a class and also the constraints imposed

Journal of Engineering Sciences Vol 15 Issue 05,2024

ISSN:0377-9254 jespublication.com Page 604

on the system. The class diagrams are widely used in the

modeling of object oriented systems because they are the

only UML diagrams, which can be mapped directly with

object-oriented languages. It is also known as a structural

diagram. Class diagram contains • Classes • Interfaces •
Dependency, generalization and association.

Fig 5.1 shows the class diagram of the project

2. USECASE DIAGRAM:

A use case diagram in the Unified Modeling Language

(UML) is a type of behavioral diagram defined by and

created from a Use-case analysis. Its purpose is to present a

graphical overview of the functionality provided by a

system in terms of actors, their goals (represented as use

cases), and any dependencies between those use cases. The

main purpose of a use case diagram is to show what system

functions are performed for which actor. Roles of the

actors in the system can be depicted

Fig 5.2 shows the Use case Diagram

3. SEQUENCE DIAGRAM:

A sequence diagram simply depicts interaction between

objects in a sequential order i.e. the order in which these

interactions take place. We can also use the terms event

diagrams or event scenarios to refer to a sequence diagram.

Sequence diagrams describe how and in what order the

objects in a system function. Sequence diagrams are used

to formalize the behavior of the system and to visualize the

communication among objects. These are useful for

identifying additional objects that participate in the use

cases. These diagrams are widely used by businessmen and

software developers to document and understand

requirements for new and existing systems.

Fig 5.3 Shows the Sequence Diagram

6. RESULTS

6.1 Output Screens

Fig 6.1 Home Page

Fig 6.2 Upload the Dataset

Journal of Engineering Sciences Vol 15 Issue 05,2024

ISSN:0377-9254 jespublication.com Page 605

Fig 6.3.Preprocess the Dataset

Fig 6.4 CNN Algorithm Accuracy

Fig 6.5 Performance Graph

Fig 6.6 Upload the Test Image

. Fig 6.7 Prediction Result

7. CONCLUSION

In this paper we have presented a data-driven approach for

automatically prototyping software GUIs, and an

implementation of this approach in a tool called REDRAW

for Android. A comprehensive evaluation of REDRAW

demonstrates that it is capable of (i) accurately detecting

and classifying GUI-components in a mock-up artifact. (ii)

generating hierarchies that are similar to those that a

developer would create. (iii) generating apps that are

visually similar to mock-up artifacts. (iv) positively

impacting industrial workflows. In the future, we are

planning on exploring CNN architectures aimed at object

detection to better support the detection task. Additionally,

we are planning on working with industrial partners to

integrate REDRAW, and our broader prototyping

approach, into their workflows.
FUTURE SCOPE

The future of Automatic GUI generation with great

promises, as major technology companies and developers

have been attempting the application of machine learning

in their own field. The following are some future work for

GUI generation: • In order to further improve the accuracy
of code semantic metric in Chapter 3, future research

directions will consider building a simpler monitoring

model through deep learning and multiple similarity

metrics. The evaluation model 90 needs to be able to

understand the importance of each similarity metric. An-

other interesting direction is to use unsupervised learning

algorithms on multiple source code translation datasets,

and then use these representations as features of the

supervised model. • In Chapter 4, the future work could be
trying to create more elements to gen- erate additional web

examples such as actual icons, image buttons, drop-down

menus, forms, and bootstrap components. With the

increasing performance of computer hardware, it is better

to create a dataset that can be directly trained by

HTML/CSS code than a DSL token sequence in the future.

Journal of Engineering Sciences Vol 15 Issue 05,2024

ISSN:0377-9254 jespublication.com Page 606

A good way to generate more variants in hand-drawn

sketch data might be to create a realistic hand-drawn

website image using a Generative Adversarial Network

(GAN).

8. REFERENCES

1. LeCun, Y. et al 1998 "Gradient-based learning applied to

document recognition."

2. Rousseeuw, P. J. et al. 1999 "The Wessa Online Outlier

Detection."

3. Hunter, J. D 2007 "Matplotlib: A 2D graphics

environment." Computing In Science & Engineering, (3),

90-95.

4. Sokolova. M & Lapalme. G. 2009. "A systematic

analysis of performance measures for classification tasks."

5. Pan. S. J & Yang. Q 2010 "A survey on transfer

learning." IEEE Transactions on Knowledge and Data

Engineering, 22(10), 1345-1359.

6. Bergstra. J & Bengio.Y 2012 "Random search for hyper-

parameter optimization." Journal of Machine Learning

Research, 13(Feb), 281-305.

7. Yosinski. J. et al 2014 "How transferable are features in

deep neural networks?" Advances in Neural Information

Processing Systems, 27.

8. Jones. E. et al 2017 "Requests: HTTP for Humans."

Retrieved from https://docs.python requests.org/en/latest/.

9. Shorten. C & Khoshgoftaar. T. M. 2019 "A survey on

Image Data Augmentation for Deep Learning." Journal of

Big Data, 6(1), 60.

10. Sparks. E. R. et al 2020 "Electron: Cross-platform

desktop application development."

Journal of Engineering Sciences Vol 15 Issue 05,2024

ISSN:0377-9254 jespublication.com Page 607

	In industrial mobile app development, mock-up artifacts typically come in the form of high fidelity images (with or without meta-data) created by designers using software such as Photoshop or Sketch. In this scenario, depending on design and developme...
	4. PROPOSED SYSTEM

