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ABSTRACT 

 

Electrification of transportation systems is 

increasing, in particular city buses raise 

enormous potential. Deep understanding of 

real-world driving data is essential for 

vehicle design and fleet operation. Various 

technological aspects must be considered to 

run alternative powertrains efficiently. 

Uncertainty about energy demand results in 

conservative design which implies 

inefficiency and high costs. Both, industry, 

and 

academia miss analytical solutions to solve 

this problem due to complexity and 

interrelation of parameters. Precise energy 

demand prediction enables significant cost 

reduction by optimized operations. This 

paper aims at increased transparency of 

battery electric buses’ (BEB) energy 

economy.We introduce novel sets of 

explanatory variables to characterize speed 

profiles, which we utilize in powerful 

machine learning methods. We develop and 

comprehensively assess 5 different 

algorithms regarding prediction accuracy, 

robustness, and overall applicability. 

Achieving a prediction accuracy of more 

than 94%, our models performed excellent 

in combination with the sophisticated 

selection of features. The presented 

methodology bears enormous potential for 

manufacturers, fleet operators and 

communities to transform mobility and thus 

pave the way for sustainable, public 

transportation. 

 

1. INTRODUCTION  

Traffic causes approximately 25% of 

greenhouse gas (GHG) emissions in Europe, 

and this percentage is increasing [1]. 

Therefore, widespread electrification of the 

mobility sector is one of the most positive 

actions that can be taken in relation to 

climate change and sustainability [2], [3]. It 

seems clear that electric buses, because of 

their low pollutant emissions, are set to play 

a key role in the public urban transportation 

of the future. Although the initial investment 

in electrification  may be high - e.g. 

purchase costs of BEBs are up to twice as 

high as those of Diesel buses [4] - it is 

quickly amortized because the inherent 

efficiency of electric vehicles far exceeds 

that of internal combustion engine vehicles 

(up to 77% [5]) and thus operational 

respectively life cycle costs are significantly 

lower [6]. In addition, electrification of the 

power train brings many other advantages, 

such as a reduced noise level or pollution 

[7]–[10]. On the downside, the battery 

charging time of an electric bus is 

significantly longer than the refueling time 
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of a diesel bus, while the opposite is true for 

the range [11]. Ultimately, widespread 

electrification of the mobility sector is one 

of the most positive actions that can be taken 

in terms of climate change and 

sustainability, but more research is needed 

to ensure efficient operation, as it also poses 

significant challenges.  

 

               The starting point for this study 

was a problem proposed by Seville’s public 

bus operator. In short, they wanted to 

replace their diesel fleet with all-electric 

vehicles, but first they had to size the 

vehicles’ batteries and determine the best 

charging locations around the city. In 

practice, this means using computers to 

predict consumption on each route [12]. 

Unfortunately, this can currently only be 

done with complex physical models that 

require long simulation times, or with  data-

driven models that are less computationally 

intensive once trained, but require numerous 

driving, mechanical, and road measurements 

as inputs (see Section I-A). This is where the 

present research comes in. In this paper we 

use the bus operator’s database and a 

physics-based model of soon-to be- 

deployed electric buses to develop data-

driven models that predict the energy 

requirements of the vehicles. Amongst 

others, what distinguishes our contribution 

from previous data driven approaches is the 

small number of physical variables 

involved: we show that, to accurately predict 

the consumption on a route using machine 

learning, we only need to know the 

instantaneous speed of the vehicle and the 

number of passengers on the bus. 

Specifically, our approach consists of three 

steps: 

             1) We calculate the energy 

consumed by the bus on each route using a 

physics-based model, validated by the 

vehicle manufacturer, that uses speed and 

mass as inputs, including the bus’s own 

weight and the weight of its payload. Both 

variables are taken from the operator’s 

database. 

              2) We extract a comprehensive set 

of time and frequency features from the 

speed signal. 

              3) We train machine learning 

regression models to predict the energy 

consumption from bus payload mass and the 

above set of features, and identify those with 

the best predictive value. Interestingly, the 

feature that turns out to be the most relevant, 

i.e., the spectral entropy of velocity, has so 

far gone unnoticed in this field of research. 

 

          Ultimately, our results are useful for 

planning the transition from a conventional 

to a green bus fleet, and even for adding new 

functionalities that will be useful to 

planners: for example, the algorithms may 

be run on the battery management systems 

to provide an alternative way of monitoring 

the current state of charge of the batteries.  

                The paper is structured as follows. 

First, we identify the challenges in this field 

and review the state of the art in section I. 

Secondly, our material, methodology and 

methods are explained in Section II. 

Experimental results are presented and 

discussed in section III. Finally, section IV 

concludes our paper and shows possible 

future developments. 

2. LITERATURE SURVEY 
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‘‘Gasoline compression ignition approach 

to efficient, clean and affordable future 

engines,’’ 
The worldwide demand for transport fuels 

will increase significantly but will still be 

met substantially (a share of around 90%) 

from petroleum-based fuels. This increase in 

demand will be significantly skewed 

towards commercial vehicles and hence 

towards diesel and jet fuels, leading to a 

probable surplus of lighter low-octane fuels. 

Current diesel engines are efficient but 

expensive and complicated because they try 

to reduce the nitrogen oxide and soot 

emissions simultaneously while using 

conventional diesel fuels which ignite very 

easily. Gasoline compression ignition 

engines can be run on gasoline-like fuels 

with a long ignition delay to make low-

nitrogen-oxide low-soot combustion very 

much easier. Moreover, the research octane 

number of the optimum fuel for gasoline 

compression ignition engines is likely to be 

around 70 and hence the surplus low-octane 

components could be used without much 

further processing. Also, the final boiling 

point can be higher than those of current 

gasolines. The potential advantages of 

gasoline compression ignition engines are as 

follows. First, the engine is at least as 

efficient and clean as current diesel engines 

but is less complicated and hence could be 

cheaper (lower injection pressure and after-

treatment focus on control of carbon 

monoxide and hydrocarbon emissions rather 

than on soot and nitrogen oxide emissions). 

Second, the optimum fuel requires less 

processing and hence would be easier to 

make in comparison with current gasoline or 

diesel fuel and will have a lower 

greenhouse-gas footprint. Third, it provides 

a path to mitigate the global demand 

imbalance between heavier fuels and lighter 

fuels that is otherwise projected and improve 

the sustainability of refineries. The concept 

has been well demonstrated in research 

engines but development work is needed to 

make it feasible on practical vehicles, e.g. on 

cold start, adequate control of exhaust 

carbon monoxide and hydrocarbons and 

control of noise at medium to high loads. 

Initially, gasoline compression ignition 

engines technology has to work with current 

market fuels but, in the longer term, new and 

simpler fuels need to be supplied to make 

the transport sector more sustainable. 

‘‘Energy consumption of an electric and 

an internal combustion passenger car. A 

comparative case study from real world 

data on the Erfurt circuit in Germany,’’ 
Electric vehicles promise to contribute to the 

achievement of a more sustainable transport 

system, e.g. through reducing energy 

consumption and CO2 emissions. For the 

assessment of electric vehicles’ 
environmental impact and for decisions on 

their operational deployment, information 

about their factors of energy consumption 

compared to conventional vehicles is 

needed. This paper investigates the 

differences between one battery electric and 

one internal combustion passenger car in 

terms of their energy consumption in various 

driving situations. The vehicles were 

equipped with multiple devices for 

measuring and recording energy data during 

operation. On a 42-km test route within and 

around the city of Erfurt, in Germany, test 

drives were conducted by a group of drivers 

in December 2016. Each driver drove both 
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vehicles consecutively as to obtain 

comparable data. Through specific driving 

scenarios, the effects of driving style and 

peak hour traffic on energy consumption are 

examined as well. Different road types in 

particular show varying effects on the BEV 

and the ICV. Our results affirm that the 

energy consumption of electric vehicles is 

less sensitive to speed dynamics in urban 

areas than are conventional vehicles. While 

the relative efficiency advantage of electric 

vehicles is at 68 percent in the baseline 

scenario, it is at 77 percent for urban 

driving. We could not find significant 

differences in the BEV’s relative 

consumption advantages during the peak 

hours or for aggressive or calm driving. 

3. EXISTING SYSTEM 

The prediction of energy demand for battery 

electric vehicles (BEVs) in general, and 

battery electric buses (BEBs) in particular, 

have been thoroughly investigated. This is 

not surprising, as [13] shows that BEBs are 

a viable replacement for conventional 

vehicles and are also less sensitive to 

variations in mission profiles than diesel 

buses. It is important to note also that the 

duty cycle and driving conditions of a BEB 

are very different from those of other BEVs, 

shifting the focus from kinematic 

relationships to route, schedule, and 

passenger load. 

 

The majority of previous studies utilize 

complex physics based  vehicle models, 

though they vary in focus and objective 

[14]–[21]. In [14], for example, the authors 

examine the impact of power train 

efficiency, rolling resistance,  and auxiliary 

power on the energy consumption of battery 

electric vehicles (BEVs). While drive train 

efficiency and rolling resistance are relevant 

to the physical movement of the vehicles, 

auxiliary power demand is especially 

important at the lower speeds (< 40 km/h) 

where city buses typically operate, 

motivating the need for accurate knowledge 

of auxiliary power to predict overall energy 

consumption. The study of De Cauwer et al. 

[15] integrates a physical model of the 

vehicle and a data-driven methodology with 

the aim to detect and quantify correlations 

between the kinematic 

parameters and the vehicle’s energy 

consumption. Commonly used kinematic 

parameters are complemented by additional 

factors such as the travel distance and time 

or the temperature.  

 

Wang et al [17] studied the influence of 

rolling resistance, which depends on the 

road surface, as well as various weather 

conditions, on power demand. The 

prediction model in [18] consists of a 

longitudinal dynamics model complemented 

by additional dedicated measurements from 

a dynamometer, as well as coastdown tests, 

to reduce the model’s uncertainty. Similarly, 

in [21] the authors introduce a novel and 

computationally efficient electro-mechanical 

model of a BEB to study the influence of 

factors such as payload mass, temperature 

and rolling resistance on consumption. All 

these approaches provide valuable insight on 

the interrelation of factors of 

influence; nevertheless, they involve 

intricate equations and require accurate 

modeling of the vehicles and their 

components to generate results. Like all 

physics-based models, they are of limited 
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practical use due to the long simulation 

times. In addition, most previous research 

has focused primarily on light-duty vehicles, 

and scaling to the heavy-duty class is 

complex due to completely different driving 

profiles and dynamics. 

 

Data-driven approaches, which use 

machine-learning or deep learning 

algorithms and real-world driving data, or 

even mixed data-driven and physics-based 

approaches, can be found in [22]–[35]. For 

example, Chen et al. [22] review state of the 

art energy-consumption estimation models 

(rulebased vs. data-driven) for electric 

vehicles and study the case of electric buses 

using logistic regression and neural 

networks on real-world data. Additionally, 

they identify the research gap for energy 

consumption models of heavy duty vehicles 

e.g. city buses, buttressing the motivation of 

our work. Pamula et al. [23] used both deep 

learning and classical neural networks to 

forecast the energy demand of electric 

buses.  

 

Disadvantages 

• Most approaches use data that standard 
vehicles are often not equipped to measure, 

such as the location of bus stops or road 

gradient. In addition, variables that are 

highly dependent on the particular 

conditions of the experiment are frequently 

taken into account, such as the length of the 

trip. The relationship of the latter with 

vehicle energy economy is obvious – e.g., 

the further you drive the more energy is 

consumed. However, it must be used with 

caution for prediction, as machine learning 

algorithms may focus on it and overlook 

other relevant factors. By contrast, our 

algorithms take as initial input only the mass 

(estimated from the curb weight plus 

number of passengers) and the vehicle 

speed, which can be easily obtained by the 

user. Furthermore, we characterize speed 

profiles by extracting 40 features at different 

levels of abstraction in the frequency and 

time domains. This way, we uncover hidden 

and valuable information that leads to higher 

prediction accuracy, improved 

generalization, and thus high application 

relevance. In addition, we implement an 

intelligent route segmentation algorithm that 

makes the prediction robust to data non-

stationarity, making the final framework 

more transferable and even more applicable. 

• Despite the abundance of machine-learning 

techniques, only a few of them are 

commonly used. In this work, we consider 

the full range, from non-learning statistical 

approaches to supervised learning and 

probabilistic methods. Consequently, this 

work presents and comprehensively 

compares the full potential of novel machine 

learning methods for predicting the energy 

consumption of EVs. Ultimately, we 

investigate the performance of various 

powerful machine learning models, from the 

very technical detail to the long-term 

application. 

 

• Most studies use data from a single vehicle 
on a single route or use speed profiles from 

Standardized Driving Cycles (SDCs). 

Therefore, the variety and diversity 

within the data is comparatively low. 

However, a major challenge in this area is 

that the relevant factors are diverse and the 

interrelationships are complex. Thus, the 
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larger the variety in the data, the better the 

machine learning predictions will be. In 

contrast, the underlying fleet data for this 

work is measured from an entire fleet of 30 

vehicles, which operate various routes a day 

and drivers change frequently even during 

the day. This allows us to capture a wide 

variety of traffic situations and driving 

styles, containing much more valuable 

information. 

• Auxiliary power demand, including 
HVAC, is rarely considered in detail and 

often replaced by a constant  term. However, 

especially in extreme low and high 

temperature regions, heating and cooling 

have a significant impact on the energy 

consumption and thus the range of 

BEBs.We have considered complete energy 

profiles, including HVAC, recovery, etc., 

which allows this work to address accurate 

total energy consumption at the trip level, 

which is relevant to transit operators. 

4. PROPOSED SYSTEM 

In this paper we use the bus operator’s 

database and a physics-based model of soon-

tobe- deployed electric buses to develop 

data-driven models that predict the energy 

requirements of the vehicles. Amongst 

others, what distinguishes our contribution 

from previous data driven approaches is the 

small number of physical variables 

involved: we show that, to accurately predict 

the consumption on a route using machine 

learning, we only need to know the 

instantaneous speed of the vehicle and the 

number of passengers on the bus. 

Specifically, our approach consists of 

three steps: 

1) We calculate the energy consumed by the 

bus on each route using a physics-based 

model, validated by the vehicle 

manufacturer, that uses speed and mass as 

inputs, 

including the bus’s own weight and the 

weight of its payload. Both variables are 

taken from the operator’s database. 

2) We extract a comprehensive set of time 

and frequency features from the speed 

signal. 

3) We train machine learning regression 

models to predict the energy consumption 

from bus payload mass and the above set of 

features, and identify those with the best 

predictive value. Interestingly, the feature 

that turns out to be the most relevant, i.e., 

the spectral entropy  of velocity, has so far 

gone unnoticed in this field of research. 

Advantages 

1) We propose a scalable and efficient 

hybridization Machine Learning models for 

exact predictions. 

2) We conducted several hybridizations of 

genetic algorithm with filter and embedded 

feature selection methods, in the data pre-

processing phase of Random Forest and 

Multivariate Linear Regression (MLR) 

predictive model, with the aim of improving 

its performance. 

 

5. SYSTEM ARCHITECTURE 
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6. IMPLEMENTATION 

Modules 

Service Provider 

In this module, the Service Provider has to 

login by using valid user name and 

password. After login successful he can do 

some operations such as           Browse 

Datasets and Train & Test Data Sets, View 

Trained and Tested Accuracy in Bar Chart, 

View Trained and Tested Accuracy Results, 

View Prediction Of Energy Economy Type, 

View Energy Economy Type Ratio, 

Download Predicted Data Sets, View 

Energy Economy Type Ratio Results, View 

All Remote Users. 

View and Authorize Users 

In this module, the admin can view the list 

of users who all registered. In this, the 

admin can view the user’s details such as, 

user name, email, address and admin 

authorizes the users. 

Remote User 

In this module, there are n numbers of users 

are present. User should register before 

doing any operations. Once user registers, 

their details will be stored to the database.  

After registration successful, he has to login 

by using authorized user name and 

password. Once Login is successful user 

will do some operations like  REGISTER 

AND LOGIN,  PREDICT ENERGY 

ECONOMY PREDICTION TYPE, VIEW 

YOUR PROFILE. 

7. CONCLUSION AND FUTURE 

ENHANCEMENT 

  

This paper offers a data-driven approach that 

uses both simulated and real-world data for 

planning problems and electrification of 

public transport. The results confirm that the 

energetic relevant features obtained by 

feature selection and regression analysis 

perfectly characterize the energy 

consumption of BEBs under different real 

driving conditions. It is a practical approach 

for fleet operators who want to retrofit or 

replace their conventional buses with 

electric vehicles and build the corresponding 

infrastructure. We emphasize in this context 

the so-called ‘‘Vehicle Routing Problem’’, 
e.g. mentioned by [59], [60]. The energy 

demand on each route needs to be known a 

priori to correctly size the batteries, decide 

on the optimal bus operating modes (all-

electric, hybrid electric, et cetera), and 

select the best charging strategies (i.e. 

opportunity vs. conventional charging). The 

worst-case scenario – the most energy-

intensive route – is the limiting factor. 

Ultimately, this knowledge is essential for 

fleet operators to identify critical operational 

limits in advance, avoid potential 

showstoppers, and gain confidence in new 

technologies. Thus, to achieve reliable and 

affordable service on all routes in the end .  

 

              As our main contribution, the paper 

presents a novel selection of explanatory 

variables that combine time and frequency 

characteristics of the speed waveform. To 

extract these features, the route is divided 

into micro trips. This ‘segment-based’ 
prediction provides robustness against non 

stationarity. Starting with an initial set of 40 

features, we have found a minimum number 

of characteristics with high predictive value. 

The most relevant of these features, i.e., the 

spectral entropy of velocity profiles, has so 

far even gone unnoticed in this field. This 
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result confirms our assumption that it is in 

the velocity waveform, whose temporal 

structure is well captured by the spectral 

entropy, where the most essential 

information actually resides. 

             In future research, we plan to extend 

this approach to other scenarios, as the 

challenge is to find out how this 

methodology performs under different 

circumstances. The proposed approach is of 

particular interest to companies in the 

transportation and logistics sector. In 

particular, it is of interest to fleet operators 

that rely on heavy-duty trucks and often 

struggle to electrify their fleets because they 

lack a solid framework for making the right 

choices for the right vehicles. It could even 

be applied to other classes of vehicles or 

transport systems, such as passenger 

vehicles or rail transport. On the other hand, 

meteorological characteristics, road type and 

operational features for instance could be 

investigated more deeply. This is why we 

plan to investigate seasonally and locally 

changing conditions and recommend careful 

feature selection according to each use case. 

Finally, predictive analytics of additional 

target variables, such as the peak power of 

the system or the electric current demands 

on the batteries are of high interest and 

could be investigated by the presented 

methodology. 
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