
Advanced Detection of Distributed Concurrency Bugs in Cloud RAID

through Log Mining and Enhancement Strategies

M.Anitha
1
,E.Nagaraju

2
,B.Siva Shankar

3

#1 Assistant Professor & Head of Department of MCA, SRK Institute of

Technology, Vijayawada.

#2 Assistant Professor in the Department of MCA,SRK Institute of Technology,

Vijayawada.

#3 Student in the Department of MCA, SRK Institute of Technology, Vijayawada

ABSTRACT_ Cloud systems suffer from distributed concurrency bugs, which often lead to

data loss and service outage. This paper presents CLOUDRAID, a new automatical tool for

finding distributed concurrency bugs efficiently and effectively. Distributed concurrency

bugs are notoriously difficult to find as they are triggered by untimely interaction among

nodes, i.e., unexpected message orderings. To identify simultaneousness bugs in cloud

frameworks proficiently and successfully, CLOUDRAID breaks down and tests consequently

just the message orderings that are probably going to uncover blunders. In particular,

CLOUDRAID mines the logs from past executions to reveal the message orderings that are

doable however deficiently tried. Likewise, we likewise propose a log upgrading procedure to

present new logs consequently in the framework being tried. These additional logs added

work on additional the adequacy of CLOUDRAID without presenting any recognizable

exhibition above. Our log- based approach makes it appropriate for live frameworks. We

have applied CLOUDRAID to break down six delegate disseminated frameworks:

Hadoop2/Yarn, HBase, HDFS, Cassandra, Animal specialist, and Flink. CLOUDRAID has

prevailed with regards to testing 60 distinct variants of these six frameworks (10 renditions

for each framework) in 35 hours, uncovering 31 simultaneousness bugs, including nine new

bugs that have never been accounted for. For these nine new bugs identified, which have all

been affirmed by their unique engineers, three are basic and have previously been fixed.

1.INTRODUCTION

Distributed systems, such as scale-out computing frameworks distributed key-value stores

scalable file systems and cluster management servicesare the fundamental building blocks of

moderncloud applications. As cloud applications provide 24/7online services to users, high

reliability of their underlyingdistributed systems becomes crucial. However,

distributedsystems are notoriously difficult to get right. There are widelyexisting software

Journal of Engineering Sciences Vol 15 Issue 05,2024

ISSN:0377-9254 jespublication.com Page 643

bugs in real-world distributed systems,which often cause data loss and cloud outage, costing

serviceproviders millions of dollars per outrage.

Among all types of bugs in distributed systems, distributedconcurrency bugs are among the

most troublesome. These bugs are triggered by complex interleavingsof messages, i.e.,

unexpected orderings of communicationevents. It is difficult for programmers to

correctlyreason about and handle concurrent executions on multiplemachines. This fact has

motivated a large body of research ondistributed system model checkers whichdetect hard-

to-find bugs by exercising all possible messageorderings systematically. Theoretically, these

model checkerscan guarantee reliability when running the same workloadverified earlier.

However, distributed system model checkers face the state-space explosion problem. Despite

recentadvancesit is still difficult to scale them to many largereal-world applications. For

example, in our experimentsfor running the WordCount workload on Hadoop2/Yarn,5,495

messages are involved. Even in such a simple case, itbecomes impractical to test exhaustively

all possible messageorderings in a timely manner.

2.LITERATURE SURVEY

The most crucial step in the software development process is conducting a literature survey. The

time factor, economy, and company traffic redundancy elimination all need to be determined

before the tool can be developed. Once these requirements are met, the operating system and

programming language that can be used to develop the tool are the next steps. When the

developers begin fabricating the instrument the software engineers need parcel of outside

help. Senior programmers, books, and websites are all good places to look for this assistance.

We must be familiar with the following ideas for developing the proposed system before

building it..

1.A new general framework for secure public key encryption with keyword search

Boneh et al. introduced Public Key Encryption with Keyword Search (PEKS). enables users

to search encrypted documents on an untrusted server without disclosing any information in

Eurocrypt'04 The cryptographic research community has paid a lot of attention to this idea

because it is very useful in many applications. However, the Keyword Guessing Attack (KGA)

that is launched by a malicious server is a limitation of all existing PEKS schemes. Dual-

Server Public Key Encryption with Keyword Search (DS-PEKS) is the name of the new

PEKS framework we propose in this paper. This new system can endure every one of the

assaults, including the KGA from the two untrusted servers, as long as they don't intrigue.

Journal of Engineering Sciences Vol 15 Issue 05,2024

ISSN:0377-9254 jespublication.com Page 644

Following that, we present a generic DS-PEKS construction employing a brand- new SPHFs

variant, which is of independent interest..

2.Searchable symmetric encryption: Improved definitions and efficient constructions

A party can outsource the private storage of his data to another party using searchable

symmetric encryption (SSE), while still maintaining the ability to selectively search over it.

This issue has been the focal point of dynamic exploration and a few security definitions and

developments have been proposed.In this paper we start by evaluating existing

documentations of safety and propose new definitions. Interestingly, our constructions are

more efficient than any of the previous ones, in addition to meeting stronger security

guarantees.

Further, earlier work on SSE just viewed as the setting where just the proprietor of the

information is fit for submitting search questions. We think about the natural extension where

anyone, not just the owner, can submit search queries. In this multi-user setting, we present an

effective construction and formally define SSE..

3.Public Key Encryption with Keyword Search based on K-Resilient IBE

Abstract. Alice receives an encrypted email from Bob. For some reason (such as routing), a

gateway wants to see if an email contains a particular keyword. However, Alice does not want

anyone but herself to decrypt the email, including the gateway itself. Public key encryption

with keyword search (PEKS) is required in this situation. K-Resilient Public Key Encryption

with Keyword Search, or KR-PEKS, is the brand-new method we develop in this paper.

Without the random oracle, the new plan withstands a targeted keyword attack with

confidence. The KR-PEKS was constructed using the ability to construct a Public Key

Encryption with Keyword Search from an Identity Based Encryption. By demonstrating that

the utilized IBE has a concept of key privacy, the new scheme's security was demonstrated.

The plan was then adjusted in two unique ways to satisfy every one of the accompanying:

The first change was made to make it possible to search for multiple keywords, and the

second change was made to get rid of the need for secure channels..

4.Generic constructions of secure-channel free searchable encryption with adaptive

security

For looking through catchphrases against scrambled information, public key encryption

conspire with watchword search (PEKS), and its augmentation secure-channel free PEKS

Journal of Engineering Sciences Vol 15 Issue 05,2024

ISSN:0377-9254 jespublication.com Page 645

(SCF-PEKS), has been proposed. In this paper, we broaden the security of SCF-PEKS,

calling it versatile SCF-PEKS, wherein a foe (displayed as a "malevolent however genuine"

recipient) is permitted to give test questions adaptively. We show that versatile SCF-PEKS

can be conventionally developed by unknown character based encryption as it were.

3.PROPOSED SYSTEM

We propose a new approach, CLOUDRAID, for detecting concurrency bugs in distributed

systems efficiently and effectively. CLOUDRAID leverages the run-time logs of live systems

and avoids unnecessary repetitive tests, thereby drastically improving the efficiency and

effectiveness of our approach. We describe a new log enhancing technique for improving log

quality automatically. This enables us to log key communication events in a system

automatically without introducing any noticeable performance penalty. The enhanced logs

can further improve the overall effectiveness of our approach.

3.1IMPLEMENTATION

3.1.1 Admin

In this module, the Service Provider has to login by using valid user name and password.

After login successful he can do some operations such as View All Users and Authorize,

View All Datasets,View All Bug Report Datasets By Chain,View All Severity Category

Results,View All Bug Fixed Results,View All Bug Resolved Results.

3.1.2 View and Authorize Users

Inthismodule,facultyregisterandlogintothesystem.Heallowsuploadingmaterials, events,

attendance, marks in the system. He can view theirstudent’sattendancedetails, marksdetails,

and updatehisprofile.

3.1.3 End User

In this module, there are n numbers of users are present. User should register before doing

any operations. Once user registers, their details will be stored to the database. After

registration successful, he has to login by using authorized user name and password. Once

Login is successful user will do some operations like MyProfile,UploadDatasets,View All

Datasets,Find Bug Severity Category,Find Severity Category Results By Hashcode.

Journal of Engineering Sciences Vol 15 Issue 05,2024

ISSN:0377-9254 jespublication.com Page 646

Fig 1:SYSTEM ARCHITECTURE

4.RESULTS AND DISCUSSION

FIG-1: The figure above shows the user's homepage. A user can perform operations such as

viewing all users and authorizing them, viewing all datasets, viewing all bug report datasets

by chain, viewing all severity category results, viewing all bug fixed results, and viewing all

bug resolved results

Journal of Engineering Sciences Vol 15 Issue 05,2024

ISSN:0377-9254 jespublication.com Page 647

FIG-2: the above figure shows the interface of the uploading the dataset.

FIG-3: The figure above shows the findings of bug severity category status. You need to

provide the RID, bug ID, and enter a description. After clicking on 'Find Status,' it will display

the type of bug (blocker, normal, major, minor, trivial)

Journal of Engineering Sciences Vol 15 Issue 05,2024

ISSN:0377-9254 jespublication.com Page 648

FIG-4: The figure above shows the findings of the severity of bug status. It displays the types

of bugs such as normal, blocker, major, and minor.

FIG-5 The figure above shows the bar graph representation of all bugs resolved. Out of 1,241

bugs, 1,239 were resolved, 3 were closed, and 2 were not resolved

Journal of Engineering Sciences Vol 15 Issue 05,2024

ISSN:0377-9254 jespublication.com Page 649

5.CONCLUSION

We present CLOUDRAID, a simple yet

effective tool for detectingdistributed

concurrency bugs. CLOUDRAID achieves

itsefficiency and effectiveness by

analyzing message orderingsthat are likely

to expose errors from existing logs.

Ourevaluation shows that CLOUDRAID is

simple to deploy andeffective in detecting

bugs. In particular, CLOUDRAID cantest

60 versions of six representative systems

in 35 hours,finding successfully 31 bugs,

including 9 new bugs that have never been

reported before.

REFERENCES

[[1] J. Dean and S. Ghemawat,

“Mapreduce: Simplified data

processing on large clusters,” Commun.

ACM, vol. 51,

no. 1, pp. 107–113, Jan. 2008. [Online].

Available: http:

//doi.acm.org/10.1145/1327452.1327492

[2] V. K. Vavilapalli, A. C. Murthy, C.

Douglas, S. Agarwal, M. Konar,

R. Evans, T. Graves, J. Lowe, H. Shah, S.

Seth, B. Saha, C. Curino,

O. O’Malley, S. Radia, B. Reed, and E.

Baldeschwieler, “Apache

hadoop yarn: Yet another resource

negotiator,” in Proceedings of

the 4th Annual Symposium on Cloud

Computing, ser. SOCC ’13.

New York, NY, USA: ACM, 2013, pp.

5:1–5:16. [Online]. Available:

http://doi.acm.org/10.1145/2523616.25236

33

[3] L. George, HBase: the definitive guide:

random access to your planet-size

data. " O’Reilly Media, Inc.", 2011.

[4] A. Lakshman and P. Malik,

“Cassandra: a decentralized structured

storage system,” ACM SIGOPS Operating

Systems Review, vol. 44,

no. 2, pp. 35–40, 2010.

[5] Z. Guo, S. McDirmid, M. Yang, L.

Zhuang, P. Zhang,

Y. Luo, T. Bergan, P. Bodik, M.

Musuvathi, Z. Zhang, and

L. Zhou, “Failure recovery: When the cure

is worse than

the disease,” in Proceedings of the 14th

USENIX Conference on

Hot Topics in Operating Systems, ser.

HotOS’13. Berkeley, CA,

USA: USENIX Association, 2013, pp. 8–

8. [Online]. Available:

http://dl.acm.org/citation.cfm?id=2490483.

2490491

[6] D. Yuan, Y. Luo, X. Zhuang, G. R.

Rodrigues, X. Zhao, Y. Zhang,

P. U. Jain, and M. Stumm, “Simple testing

can prevent most critical

failures: An analysis of production failures

in distributed dataintensive

systems,” in Proceedings of the 11th

USENIX Conference on

Journal of Engineering Sciences Vol 15 Issue 05,2024

ISSN:0377-9254 jespublication.com Page 650

Operating Systems Design and

Implementation, ser. OSDI’14. Berkeley,

CA, USA: USENIX Association, 2014, pp.

249–265. [Online].

Available:

http://dl.acm.org/citation.cfm?id=2685048.

2685068

[7] H. S. Gunawi, M. Hao, T.

Leesatapornwongsa, T. Patana-anake,

T. Do, J. Adityatama, K. J. Eliazar, A.

Laksono, J. F. Lukman,

V. Martin, and A. D. Satria, “What bugs

live in the cloud?

a study of 3000+ issues in cloud systems,”

in Proceedings of

the ACM Symposium on Cloud

Computing, ser. SOCC ’14. New

York, NY, USA: ACM, 2014, pp. 7:1–

7:14. [Online]. Available:

http://doi.acm.org/10.1145/2670979.26709

86

[8] T. Leesatapornwongsa, J. F. Lukman,

S. Lu, and H. S. Gunawi,

“Taxdc: A taxonomy of non-deterministic

concurrency bugs in

datacenter distributed systems,” in

Proceedings of the Twenty-First

International Conference on Architectural

Support for Programming

Languages and Operating Systems, ser.

ASPLOS ’16. New

York, NY, USA: ACM, 2016, pp. 517–

530. [Online]. Available:

http://doi.acm.org/10.1145/2872362.28723

74

[9] T. Leesatapornwongsa, M. Hao, P.

Joshi, J. F. Lukman, and H. S.

Gunawi, “Samc: Semantic-aware model

checking for fast discovery

of deep bugs in cloud systems.” in OSDI,

2014, pp. 399–414.

[10] H. Lin, M. Yang, F. Long, L. Zhang,

and L. Zhou, “Modist: Transparent

model checking of unmodified distributed

systems,” in 6th

USENIX Symposium on Networked

Systems Design & Implementation

(NSDI), 2009.

[11] J. Simsa, R. E. Bryant, and G. Gibson,

“dbug: systematic evaluation

of distributed systems.” USENIX, 2010.

[12] H. Guo, M. Wu, L. Zhou, G. Hu, J.

Yang, and L. Zhang, “Practical

software model checking via dynamic

interface reduction,” in

Proceedings of the Twenty-Third ACM

Symposium on Operating Systems

Principles. ACM, 2011, pp. 265–278.

[13] D. Borthakur et al., “Hdfs architecture

guide,” Hadoop Apache Project,

vol. 53, 2008.

[14] P. Hunt, M. Konar, F. P. Junqueira,

and B. Reed, “Zookeeper: Waitfree

coordination for internet-scale systems.” in

USENIX annual

technical conference, vol. 8, no. 9, 2010.

Journal of Engineering Sciences Vol 15 Issue 05,2024

ISSN:0377-9254 jespublication.com Page 651

http://doi.acm.org/10.1145/2670979.2670986
http://doi.acm.org/10.1145/2670979.2670986

[15] P. Carbone, A. Katsifodimos, S.

Ewen, V. Markl, S. Haridi, and

K. Tzoumas, “Apache flink: Stream and

batch processing in a single

engine,” Bulletin of the IEEE Computer

Society Technical Committee on

Data Engineering, vol. 36, no. 4, 2015.

[16] (2018) Wala home page. [Online].

Available: http://wala.

sourceforge.net/wiki/index.php/Main_Page

/.

[17] W. Xu, L. Huang, A. Fox, D.

Patterson, and M. I. Jordan, “Detecting

large-scale system problems by mining

console logs,” in Proceedings

of the ACM SIGOPS 22nd symposium on

Operating systems principles.

ACM, 2009, pp. 117–132.

AUTHOR’S PROFILE

Ms.M.Anitha Working as Assistant

Professor & Head of Department of MCA

,in SRK Institute of technology in

Vijayawada. She done with B .tech, MCA

,M. Tech in Computer Science .She has 14

years of Teaching experience in SRK

Institute of technology, Enikepadu,

Vijayawada, NTR District. Her area of

interest includes Machine Learning with

Python and DBMS.

Mr.E.Nagaraju completed his Masters of

Computer Applications. He has published

A Paper Published on ICT Tools for

Hybrid Inquisitive Experiential Learning

in Online Teaching-a case study Journal

of Engineering Education

Transformations, Month 2021, ISSN

2349- 2473, eISSN 2394-1707. Currently

working has an Assistant professor in the

department of MCA at SRK Institute of

Technology, Enikepadu, NTR (DT). His

areas of interest include Artificial

Intelligence and Machine Learning.

Mr. B. Siva Shankar is an MCA Student

in the Department of Computer

Application at SRK Institute Of

Technology, Enikepadu, Vijayawada, NTR

District. He has Completed Degree in

B.Sc(MPC) from Government

Autonomous College, Central Jail Road,

Rajahmundry,East Godavari District. His

area of interest are Java and Python..

Journal of Engineering Sciences Vol 15 Issue 05,2024

ISSN:0377-9254 jespublication.com Page 652

	3.1.1 Admin
	In this module, the Service Provider has to login by using valid user name and password. After login successful he can do some operations such as View All Users and Authorize, View All Datasets,View All Bug Report Datasets By Chain,View All Severity...

