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ABSTRACT 

Online attacks have advanced significantly in 
recent years. Two-factor authentication, which is 
used to protect online banking users, has not 
evolved at the same pace, meaning that users are 
not sufficiently protected against these new and 
advanced attacks. This raises an important 
question: is it possible to make online activities 
more secure for the user? More specifically, we 
want to understand whether it is possible to prevent 
online attacks by involving the user? Signature 
verification as compared to traditional handcrafted 
system, where a forger has access and also attempt 
to imitate it which is used in commercial scenarios, 
like bank check payment, business organizations, 
educational institutions, government sectors, health 
care industry etc. so the signature verification 
process is used for human examination of a single 
known sample. As Signature is the primary 
mechanism both for authentication and 
authorization in legal transactions, the need for 
efficient auto-mated solutions for signature 
verification has increased. The captured values of 
the handwritten signature are unique to an 
individual and virtually impossible to duplicate. 

 

1. INTRODUCTION 

Signature verification is the process of using a 
digital signature algorithm and a public key to 
verify a digital signature on data. It is a form of 
identity verification. Banks, intelligence services, 
and other prestigious institutions employ signature 
verification to confirm a person's identification. In 
bank branches and other branch capture, signature 
comparison is frequently employed. The signature 
verification software compares a direct signature or 
a picture of a signature to the recorded signature 
image. The signature serves as the authority for all 
legal transactions. Thus, the necessity for signature 
verification grows. It is distinct for the handwritten 
signatures to individuals and that cannot be 
duplicated. In addition to being a well-liked area of 
research in the fields of pattern recognition and 
image processing, signature verification also plays 
a significant role in numerous applications, 
including access control, security, and privacy. The 
process of certifying someone based on their 
handwritten signature is known as signature 
verification. Systems for verifying signatures come 
in two varieties [1]. 

Online Signature Verification System, which 
records details like pressure, speed, direction, etc. 
using an electronic device like a tablet. Offline 
Signature Verification System, in which the 
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signature is written offline and verified using the 
image of the signature that has previously been 
stored. Two distinct methods can be used to verify 
offline signatures. One involves building models of 
real and fake signatures for each writer in a process 
known as writer dependent signature verification. 
Next, a writer's test signature sample is contrasted 
with its own training sample. This method's 
downside is that each new writer must have a 
model created in order to be confirmed.  

Before features are recovered from each of the 
original scanned signatures, size normalization, 
binarization, and thinning are used as pre-

processing steps. These qualities make up the 
knowledge base that is later used for authenticating 
signatures and spotting forgeries. We now provide a 
quick explanation of the system's several processes 
for signature verification.  

Based on their distinguishing characteristics, 
handwritten signature forgeries have been divided 
into different categories [f2]. The following forms 
of signature forgeries can be generally categorized: 

1. Random Forgery - The signer creates a 
forgery known as "the simple forgery" or "random 
forgery" by using the victim's name in his own 
unique manner. 

2. Unskilled Forgery - The signer imitates the 
signature in his own manner without prior 
experience or knowledge of the spelling. 

3. Expert Forgery - Without a doubt, the most 
challenging forgeries are produced by experienced 
forgers or professional impostors. Ammar et.al [I0] 
worked on the detection of competent forgeries in 
the 1980s. They analyzed the statistics of dark 
pixels and used them to spot shifts in the writing's 
overall flow. 

2. LITERATURE SURVEY 

 

Comparative research was done by Hansheng Lei 
and Venu Govindaraju on aspects that are often 
used. A consistency model is created to measure the 
distances-based measure by generalizing the 
already-existing feature-based measure. It was 
discovered that uniformly re-sampling the 
sequences does not always improve verification 
performance and that the simple features, such as 
X- and Y-coordinates, writing speed, and angle 
with the X-axis, are among the most consistent and 
the rate for identifying original signal is 93%.[3] 

Dr. Maged and M. M. Fahmy introduced a system 
for online handwritten signature verification that is 
based on discrete wavelet transforms (DWT) 
feature extraction and classification using feed-

forward back error neural networks [7]. The 
signature is validated in the DWT domain to 

increase the distinction between a real signature 
and a fake.A multi-matcher, which matches for the 
same input biometric signal using several 
representations and six neural networks, is used to 
validate signatures. A discussion and comparison of 
the recognition rates for each of these neural 
network recognizers is conducted. Twenty authentic 
signatures and twenty expertly forged signatures 
are tested on five users of the signature database. 
The success rate for identifying genuine signatures 
is 95%.[5] 

Christian Gruber et al. put a novel approach to 
online signature verification using support vector 
machines that is based on the LCSS kernel function 
[8]. Here, the length of an LCSS is calculated using 
a kernel function to compare the two time series. It 
has been demonstrated that the SVM LCSS can 
reliably authenticate people with just six real 
signatures. The similarity assessment of online 
signature data based on LCSS turned out to be even 
better than DTW-based methods [9].To validate 
online signatures, Abhishek Sharma and Suresh 
Sundaram have introduced a novel model-based 
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technique called GMM within the DTW framework 
[10]. 

For signature matching, they first retrieved the 
writer dependent statistical characteristics. Then, 
using a derivation in a warping path-based feature 
that is useful for verification, the properties of a 
warping path are studied.A novel approach to 
online signature verification using support vector 
machines that is based on the LCSS kernel function 
was put forth by Christian Gruber, Thiemo Gruber 
et.al. Here, the length of an LCSS is calculated 
using a kernel function to compare the two-time 
series.The kind of characteristics retrieved, the 
training process, and the classification and 
verification models employed vary amongst 
research methods.[8] 

Hidden Markov Model (HMM) was presented by J. 
K. Guoetal.Each point in a handwritten signature's 
journey was represented by a series of vectors of 
values. An effective signature verification system 
might be created using the HMM's specified set of 
feature vectors. These models were stochastic ones 
that could take into account both the differences 
and similarities across patterns. Stochastic 
matching of the model and the signature was used 
in HMM. The process of matching was carried out 
through steps of the probability distribution of the 
features used in the signatures or the probability 
used to generate the original signature.[1] 

 

3. PROPOSED SYSTEM 

Proposed system suggests a prototype for 
Handwritten Signature Verification using Machine 
Learning and Deep Learning and a model which 
can learn from signatures and make predictions as 
to whether the signature in question is a forgery or 
not. This model can be deployed at various 
government offices where handwritten signatures 
are used as a means of approval or authentication. 

Our results demonstrated that the MLP model is an 
effective and robust method for handwritten 
signature verification. The proposed model showed 
superior performance compared to existing models 
and was robust to variations in input signature 
features. This suggests that MLP models have great 
potential in signature verification applications. 

 

MODULES 

CAPTURE MODULE 

This module designed to load live signature 
images. 

When the module selected, the camera off our 
device will be activated to capture the image, and 
read as dataset or test image. 

 

BROWSE MODULE 

This module allow the user to browse the images 
from external sources, ie.., from our device. It will 
considered as test image or dataset image. 

 

COMPARE MODULE 

This module activates the algorithms in system to 
compare both signature images, and provide the 
result. 

4. CONCLUSION 

This method can be implemented in places that 
require signature authentication and verification, it 
can be used faster hence processing a large number 
of signatures and can help save resources and time 
while detecting forged signatures. 

We can detect forged signatures using the  
mentioned method.
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