
Implementation of Skip-Gram-Based File Correlation Analysis For

Efficient Large-Capacity Caching in Cloud Storage

K.VISHNU VARDHAN

1
, H.ATEEQ AHMED

2

1,

PG Student, Department of Computer Science & Engineering,

Dr.K V Subba Reddy Institute of Technology, Kurnool, AP, India.
2

Assistant Professor, Department of Computer Science & Engineering,

Dr.K V Subba Reddy Institute of Technology, Kurnool, AP, India.

ABSTRACT: Creating a high-capacity cache is vital for enhancing cloud storage accessibility.

Compared to conventional data access, cloud storage data access exhibits different patterns, and

traditional caching techniques struggle with prefetching and replacing non-frequently accessed

data. Various studies indicate that optimizing caching and prefetching strategies in cloud storage

can be achieved through file correlation. However, defining file correlations from multiple

perspectives is complex, thereby complicating the optimization process. To tackle these

challenges, this research introduces a file similarity approach based on skip-gram analysis of user

access behaviors. This method enhances prefetching and file replacement in a large-capacity

cache by evaluating file correlations. Implementing this approach allows for prefetching and

dynamically inserting files into the cache based on their correlations, significantly improving the

cache hit rate in simulation benchmarks. Furthermore, the method creates an index table after

each training phase, which requires minimal time during online operations. The time complexity

for establishing the index during training is O(N * log(V)), and the indexing time complexity is

O(1).

1. INTRODUCTION

In the digital age, a tremendous amount of

data is being created and stored from various

sources, including individuals, governmental

bodies, and corporations. As cloud

technology continues to advance, more

traditional applications are being migrated to

cloud-based platforms. However, due to

limitations in network setup and backend

management, many applications still store

data in cloud storage while maintaining the

application server as the service access

point. This trend is evident across multiple

sectors, such as publishing, archiving, and

public safety, as depicted in the figure, and

represents a shift from traditional to cloud-

based application architectures.

Cloud storage systems can offer reliable data

access services to users, but their

performance is affected by the speed of

input/output (I/O) operations. Generally, to

improve the average access performance of

cloud storage caching systems,

enhancements can be made in several areas,

such as reducing miss costs and increasing

hit rates [1], [2]. A typical method for

reducing miss costs in network storage

environments involves using a memory

hierarchy and implementing multilevel

cache strategies. As early as 1990, Muntz

and Honeyman applied multilevel caches to

distributed file systems [3]. By positioning

cache servers between clients and servers to

deliver cached file services, this hierarchical

caching strategy increased the cache hit rate

of distributed storage file systems. Chen,

Zhang, and Zhou evaluated different data

scheduling algorithms in multilevel caches

[4]. Using trace data from existing

commercial systems, they compared

multilevel caches with cooperative caches

and found that layered caches performed

Journal of Engineering Sciences Vol 15 Issue 05,2024

ISSN:0377-9254 jespublication.com Page 807

better in increasing cache hit rates. Research

mainly focuses on enhancing hit rates by

choosing well-known replacement

algorithms, such as the widely used LFU,

LRU, and ARC policies in caches [5], [6].

According to tests by Cantin and Hill using

SPEC2000, the hit rates of LRU and random

policies are almost identical when the cache

is sufficiently large. However, when the

cache capacity is small, LRU has the highest

hit rate [7]. Of course, the computational

complexity of cache policies is also a factor.

For instance, fully associative mapping can

lower miss rates even more than the LRU

algorithm, but its computational cost is too

high for full hardware implementation,

making it suitable only for virtual memory.

This indicates that operating systems

balance between complex software

calculations and higher miss rates.

Researchers have discovered that integrating

prefetching techniques with caches can

significantly boost hit rates [8]. In 1994,

Griffioen and colleagues measured the

likelihood of two files being accessed

simultaneously in a file system based on I/O

sequences and implemented prefetching

methods to enhance file system access

performance. They improved file system

access performance by 280% and reduced

cache space usage by 50% [9]. To address

the complex scenario of sequential and

random file access by multiple applications,

Li, Varki, and Bhatia predicted I/O

sequences generated by various applications

and used them in RAID, resulting in

significant improvements in RAID access

performance [10]. Jouppi suggested using a

small sacrifice cache along with prefetching

techniques to further increase cache hit rates

[11]. Using a small sacrifice cache to store

blocks swapped out of the higher-level

cache can improve memory hit rates by 20-

90%.

Researchers have applied the principle of

locality to enhance network data prefetching

efficiency. For example, Lee et al. predicted

read operations on distributed file systems

on the server side and dispatched unread

requests to clients [12]. Gong et al.

optimized the Ceph system for random

read/write operations by caching data only

when a user sends a write request and

synchronizing with the server through dirty

data merging [13]. Du et al. proposed a

framework based on data frequency

prediction involving data tracing, machine

learning modeling, and cache preprocessing

and replacement steps [14]. Liu et al.

introduced a cache replacement strategy that

used user behavior analysis by combining

association rule mining techniques and

approximate linear computing models to

analyze the cache cost of associations

among numerous small files and user access

patterns, effectively addressing the

limitations of general cache policies in

accounting for diverse user behaviors [15].

 Several researchers have improved

prefetching and replacement methods by

analyzing data access patterns. For example,

Cao and colleagues developed a model to

assess the value of web objects in the cache

by considering their size and insertion cost,

helping to determine which object to remove

during a cache miss [16]. Liu and team used

direct correlation to minimize directory

access latency in network file systems and

employed the knapsack model to decide

whether to prefetch [17]. Liao and

colleagues noted that I/O requests for

distributed file systems by applications show

a certain degree of repetition within specific

periods, predicting data request repetition

probabilities to decide on prefetching [18].

Chen and team captured data correlations

through text analysis of access records and

used prediction algorithms to forecast likely

accessed files [19]. Pang and colleagues

Journal of Engineering Sciences Vol 15 Issue 05,2024

ISSN:0377-9254 jespublication.com Page 808

proposed a new active data prefetching

technique for cloud-based distributed file

systems that enhances system performance

by improving data prefetching efficiency

and reducing communication overhead [18].

To better determine data access correlations,

researchers have developed models to

characterize correlations between data

access requests, such as the access distance

model IAD [20], independent reference

model IRM [21], and stack distance model

SDM [22]. Researchers have also found that

cloud data access follows the Zipf-like law

[23] and have used this principle to design

cache and prefetch systems. Shi et al.

proposed a web prefetching and cache

model based on Petri nets, combining

prefetching with caching to improve the

service quality of distributed storage

systems [24].

2. EXISTING SYSTEM

According to Cantin and Hill's tests with

SPEC2000, the hit rates of LRU and random

policies are nearly identical when the cache

size is sufficiently large. However, with

smaller cache capacities, the LRU policy

achieves the highest hit rate [7]. The

computational complexity of cache policies

is also important. Fully associative mapping,

for instance, can reduce miss rates more

effectively than the LRU algorithm, but its

high computational cost limits its use to

virtual memory rather than hardware-

implemented caches. This highlights a trade-

off in operating systems between complex

calculations and lower miss rates.

Researchers have found that integrating

prefetching techniques with caches can

significantly enhance hit rates [8]. In 1994,

Griffioen and colleagues evaluated the

likelihood of simultaneous file accesses in a

file system using I/O sequences,

implementing prefetching methods that

improved access performance by 280% and

reduced cache space usage by 50% [9].

Addressing the complexities of sequential

and random file access by multiple

applications, Li, Varki, and Bhatia predicted

I/O sequences for various applications in

RAID, leading to substantial improvements

in RAID access performance [10]. Jouppi

suggested further boosting cache hit rates by

using a sacrifice cache alongside prefetching

techniques [11]. A small sacrifice cache,

which stores blocks swapped out of the

higher-level cache, can enhance memory hit

rates by 20-90%.

Scholars have leveraged the principle of

locality to boost network data prefetching

efficiency. For example, Lee et al. predicted

read operations on distributed file systems

from the server side and sent unread

requests to clients [12]. Gong et al.

optimized the Ceph system for random

read/write operations by caching data only

upon user write requests and synchronizing

with the server through dirty data merging

[13]. Du et al. developed a framework based

on data frequency prediction, incorporating

data tracing, machine learning modeling,

and cache preprocessing and replacement

steps [14]. Liu et al. introduced a cache

replacement strategy that used user behavior

analysis, combining association rule mining

techniques with approximate linear

computing models to comprehensively

analyze the cache cost of associations

among numerous small files and user access

patterns. This strategy effectively addressed

the limitations of general cache policies in

accommodating diverse user behaviors [15].

Several researchers have refined prefetching

and replacement methods by studying data

access patterns. For instance, Cao and

colleagues created a model to evaluate the

value of web objects in the cache by

considering their size and insertion cost,

helping determine which object to remove

Journal of Engineering Sciences Vol 15 Issue 05,2024

ISSN:0377-9254 jespublication.com Page 809

during a cache miss [16]. Liu's team used

direct correlation to minimize directory

access latency in network file systems,

employing the knapsack model to decide on

prefetching [17]. Liao and colleagues

observed that I/O requests for distributed file

systems by applications exhibit a certain

degree of repetition within specific periods.

They predicted the probability of data

request repetition to decide on prefetching

[18]. Chen's team analyzed access records

through text analysis to capture data

correlations and used prediction algorithms

to forecast potential file accesses [19]. Pang

and colleagues proposed a new active data

prefetching technique for cloud-based

distributed file systems, improving

performance by enhancing prefetching

efficiency and reducing communication

overhead [18].

To better understand data access

correlations, researchers have developed

models like the access distance model (IAD)

[20], independent reference model (IRM)

[21], and stack distance model (SDM) [22].

They have also found that cloud data access

follows Zipf-like laws [23] and used these

principles to design cache and prefetch

systems. Shi et al. proposed a web

prefetching and cache model based on Petri

nets, combining prefetching with caching to

enhance the quality of distributed storage

systems [24].

Many scholars have explored deep learning

methods for cache prefetching. Hui et al.

suggested a file prefetching mechanism

using RNN and word embedding technology

to capture complex file access patterns [25].

Chen et al. treated data prefetching as a

classification problem, employing a neural

network-based framework to improve

accuracy. Feng et al. introduced a web

access prediction and cache prefetching

method using a Markov tree, while Lee

proposed a memory prefetching method

based on semantic similarity and

reinforcement learning. Saami et al. used a

pruning algorithm based on hardware

performance events to identify a concise

feature set, subsequently using three

learning models to find the optimal prefetch

configuration. The LSTM model has gained

significant attention, with Chen et al.

proposing a data prefetching method, SGDP,

based on Stream-Graph neural networks,

modeling the LBA Delta sequence.

Although more powerful for learning

complex patterns, these neural network

models have higher computational costs

compared to traditional methods.

Currently, there is limited study related to

cache replacement strategies based on file

correlation that use Skip-Gram and

Continuous Bag of Words techniques to

correlate files.

3. PROPOSED SYSTEM

We implement a file prefetching framework

based on file correlation. Following are

important aspects of this implementation:

1) Implemented a high-performance cache

prefetching mechanism that utilizes only the

file correlation mechanism for prefetching.

This approach has a runtime complexity of

O(1) and imposes minimal performance

overhead compared to many machine

learning strategies.

2) We implemented a dynamic and similar

file cache replacement mechanism that

maintains the prefetching hit rate's stability

while enhancing the overall cache hit rate.

3) The proposed algorithm is portable and

easily integrates with various cache

replacement strategies, allowing it to adapt

to different runtime scenarios.

Journal of Engineering Sciences Vol 15 Issue 05,2024

ISSN:0377-9254 jespublication.com Page 810

CACHING PREFETCHING STRATEGY --

In this approach, during the offline phase,

files of interest in the sacrificial zone are

first encoded, and both the file relevance

vector and the most relevant file table are

generated. The most relevant file table then

guides file prefetching during the online

phase.

4. ARCHITECTURE DIAGRAM

5. IMPLEMENTATION

Training Module

In this module, using storage systems access

logs as training data, a Machine Learning

model based on Skip-Gram technique,

vectorizes the words, then builds a model

that correlates files. This module is the crux

of this project which is responsible for

building machine learning model which is in

turn used for predicting file relevancy.

Plotting Module

This module is used for 3D-plotting

vectorized file access requests. This module

uses Principal Component Analysis(PCA)

for reducing high dimensional data to three

dimensions so that it can be visualized and

insights can be gained in case of trivial data.

Fetch Related Files Module

This module uses the trained model to fetch

relevant files of a file and this is in turn used

for building file relevancy tables whose

entries are useful for prefetching related files

so as to increase cache hit rate.

Comparison Module

This module provides a framework for

incorporating other cache replacement or

file pre-fetching strategy into the application

so that it can be compared and contrasted

against skip-gram based file correlation

analysis.

6. TECHNOLOGY STACK

Python programming language is used for

implementing as the ecosystem of libraries

useful for carrying out machine learning

tasks is very mature. The important libraries

used in this implementation are:

Genism – A robust and mature library for

natural language processing effective for

topic modelling and file similarity.

Word2vec call of genism library is the main

workhorse in this project that vectorizes file

access requests.

Pandas – A powerful data manipulation and

analysis library.

SciKit-Learn – Robust library for various

data analysis related tasks and is mainly

used in this implementation for Principal

Component Analysis.

Matplotlib – Library used for creating 3D

plots of vectors.

7. RESULTS

Simulations are carried out to analyze the

effectiveness of skip-gram based file

correlation analysis for pre-fetching related

files and is compared to LRU(Least

Recently Used) in the context of file

replacement of non-hot data. The data used

as file access requests is computer generated

random file request data in a hypothetical

environment. Few results of simulation are

given below

Journal of Engineering Sciences Vol 15 Issue 05,2024

ISSN:0377-9254 jespublication.com Page 811

Above picture shows a result from a

scenario where skip-gram based file

correlation for pre-fetching is better than

LRU

Above picture shows a result from a

scenario where skip-gram based file

correlation for pre-fetching is not better than

LRU

Above picture shows results from 150

scenarios where skip-gram based file

correlation for pre-fetching is better than

LRU

7. CONCLUSION
The Skip-Gram-Based File

Correlation Analysis For Efficient Large-

Capacity Caching in Storage Systems is

implemented. For the randomly generated

file access log the Skip-Gram-Based file

prefetching strategy for page replacement

improved on the traditional LRU page

replacement strategy in terms of total file

access time and cache efficiency. By

leveraging file access patterns and

correlations, the Skip-Gram-Based method

can more effectively prefetch files that are

likely to be accessed soon, reducing the

overall cost of file access in large-capacity

caching systems. However, it is important to

consider the additional computational

resources required for training and

maintaining the predictive model. This

conclusion is limited within the context of

computer generated random file access log

and the results may not be relevant to real

time access logs which inherently has access

characteristics favorable to Least Recently

Used cache replacement strategies based on

principle of locality. This project is limited

to comparison of computer generated

random test data only. And this project is

also limited to non-contextual skip-gram

analysis only.

As part of future work skip-gram

implementations considering contextual

vectorization may be explored

REFERENCES

1] M. Liu, L. Pan, and S. Liu, ‘‘Cost

optimization for cloud storage from user

perspectives: Recent advances, taxonomy,

and survey,’’ ACM Comput. Surv., vol. 55,

no. 13s, pp. 1–37, Dec. 2023.

[2] C. B. Tan, M. H. A. Hijazi, Y. Lim, and

A. Gani, ‘‘A survey on proof of

retrievability for cloud data integrity and

Journal of Engineering Sciences Vol 15 Issue 05,2024

ISSN:0377-9254 jespublication.com Page 812

availability: Cloud storage stateof- the-art,

issues, solutions and future trends,’’ J. Netw.

Comput. Appl.,vol. 110, pp. 75–86, May

2018.

[3] D. A. Muntz, P. Honeyman, and C. J.

Antonelli, ‘‘Evaluating delayed write in a

multilevel caching file system,’’ in

Distributed Platforms. IEEE, 1996, pp. 415–
429.

[4] Z. Chen, Y. Zhang, Y. Zhou, H. Scott,

and B. Schiefer, ‘‘Empirical evaluation of

multi-level buffer cache collaboration for

storage systems,’’ in Proc. ACM

SIGMETRICS Int. Conf. Meas. Modeling

Comput. Syst., Jun. 2005, pp. 145–156.

[5] N. Megiddo and D. S. Modha, ‘‘ARC: A

self-tuning, low overhead replacement

cache,’’ in Proc. Fast, vol. 3, 2003, pp. 115–
130.

[6] A. J. Smith, ‘‘Cache memories,’’ ACM

Comput. Surv., vol. 14, no. 3, pp. 473–530,

1982.

[7] J. F. Cantin and M. D. Hill, ‘‘Cache

performance for selected SPEC CPU2000

benchmarks,’’ ACM SIGARCH Comput.

Archit. News, vol. 29, no. 4, pp. 13–18, Sep.

2001.

[8] E. A. Shriver, C. Small, and K. A. Smith,

‘‘Why does file system prefetching work?’’
in Proc. USENIX Annu. Tech. Conf., Gen.

Track, 1999, pp. 71–84.

[9] J. Griffioen and R. Appleton, ‘‘Reducing

file system latency using a predictive

approach,’’ in Proc. USENIX Summer,

1994, pp. 197–207.

[10] M. Li, E. Varki, S. Bhatia, and A.

Merchant, ‘‘Tap: Table-based prefetching

for storage caches,’’ in Proc. FAST, vol. 8,

2008, pp. 1–16. [11] N. P. Jouppi and A.

Eustace, ‘‘Data processing system and

method with small fully-associative cache

and prefetch buffers,’’ U.S. Patent 5 261

066, Nov. 9, 1993.

[12] S. Lee, S. J. Hyun, H.-Y. Kim, and Y.-

K. Kim, ‘‘APS: Adaptable prefetching

scheme to different running environments

for concurrent read streams in distributed

file systems,’’ J. Supercomput., vol. 74, no.

6, pp. 2870–2902, Jun. 2018.

[13] Y. Gong, C. Hu, Y. Xu, and W. Wang,

‘‘A distributed file system with variable

sized objects for enhanced random writes,’’
Comput. J., vol. 59,

no. 10, pp. 1536–1550, Oct. 2016.

[14] S. Arora and A. Bala, ‘‘An ensembled

data frequency prediction based

framework for fast processing using hybrid

cache optimization,’’ J. Ambient Intell.

Hum. Comput., vol. 12, no. 1, pp. 285–301,

Jan. 2021.

[15] C. Liu, S. Ding, L. Ye, X. Chen, andW.

Zhu, ‘‘Cache replacement strategy based on

user behaviour analysis for a massive small

file storage system,’’ in Proc. 14th Int. Conf.

Comput. Autom. Eng. (ICCAE), Mar. 2022,

pp. 178–183.

[16] P. Cao and S. Irani, ‘‘Cost-aware

WWW proxy caching algorithms,’’ in Proc.

USENIX Symp. Internet Technol. Syst.,

1997, vol. 12, no. 97, pp. 193–206.

[17] Z. Liu, F. Dong, J. Zhang, P. Zhou, Z.

Xu, and J. Luo, ‘‘A client-side directory

prefetching mechanism for GlusterFS,’’ in

Proc. IEEE Int. Conf. Syst., Man, Cybern.

(SMC), Oct. 2016, pp. 3942–3947.

[18] J. Liao, F. Trahay, G. Xiao, L. Li, and

Y. Ishikawa, ‘‘Performing initiative data

prefetching in distributed file systems for

cloud computing,’’ IEEE Trans. Cloud

Comput., vol. 5, no. 3, pp. 550–562, Jul.

2017.

[19] Y. Chen, C. Li, M. Lv, X. Shao, Y. Li,

and Y. Xu, ‘‘Explicit data correlations-

directed metadata prefetching method in

distributed file systems,’’ IEEE Trans.

Parallel Distrib. Syst., vol. 30, no. 12, pp.

2692–2705, Dec. 2019.

[20] C. Roadknight, I. Marshall, and D.

Vearer, ‘‘File popularity characterisation,’’
ACM SIGMETRICS Perform. Eval. Rev.,

vol. 27, no. 4, pp. 45–50, Mar. 2000.

Journal of Engineering Sciences Vol 15 Issue 05,2024

ISSN:0377-9254 jespublication.com Page 813

[21] S. Vanichpun and A. M. Makowski,

‘‘The output of a cache under the

independent reference model: Where did the

locality of reference go?’’ in Proc. Joint Int.

Conf. Meas. Modeling Comput. Syst., Jun.

2004, pp. 295–306.

[22] L. Cherkasova and G. Ciardo,

‘‘Characterizing temporal locality and its

impact on web server performance,’’ in

Proc. 9th Int. Conf. Comput. Commun.

Netw., 2000, pp. 434–441.

[23] L. Breslau, P. Cao, L. Fan, G. Phillips,

and S. Shenker, ‘‘Web caching and Zipf-like

distributions: Evidence and implications,’’
in Proc. Conf. Comput. Commun. 18th

Annu. Joint Conf. IEEE Comput. Commun.

Soc.

Future Now (IEEE INFOCOM), vol. 1, Mar.

1999, pp. 126–134.

[24] L. Shi, Y. Han, X. Ding, L. Wei, and Z.

Gu, ‘‘SPN model for web prefetching and

caching,’’ in Proc. 1st Int. Conf. Semantics,

Knowl. Grid, Nov. 2005, p. 24.

[25] H. Chen, E. Zhou, J. Liu, and Z. Zhang,

‘‘An RNN based mechanism for file

prefetching,’’ in Proc. 18th Int. Symp.

Distrib. Comput. Appl. Bus. Eng. Sci.

(DCABES), Nov. 2019, pp. 13–16.

Journal of Engineering Sciences Vol 15 Issue 05,2024

ISSN:0377-9254 jespublication.com Page 814

