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ABSTRACT_ Approved or denied loan applications are determined by financial credit
rating. Missing-not-at-random selection bias results from the fact that we can only see
default/non-default labels for accepted samples while having no observations for rejected
samples. Such skewed data makes machine learning algorithms trained on it inherently
untrustworthy. Based on both theoretical analysis and real-world data investigation, we find
in this work that there is a strong correlation between the rejection/approval classification
task and the default/non-default classification task. Consequently, rejection and approval can
be useful in teaching default and non-default concepts. As a result, we for the first time
suggest using Multi-Task Learning (MTL) to model the biassed credit rating data. In
particular, we suggest a brand-new Reject-aware Multi-Task Network (RMT-Net).which,
using a gating network based on rejection probability, learns the task weights that regulate the
information transfer from the rejection/approval task to the default/non-default task. RMT-
Net makes use of the relationship between the two tasks, which states that the default or non-
default task must learn more from the rejection/approval task the greater the probability of
rejection. Moreover, for modelling scenarios with various rejection/approval techniques, we
extend RMT-Net to RMT-Net++. Numerous datasets are used in extensive studies, which
provide good evidence of RMT-Net's efficacy on both accepted and rejected samples.
Furthermore, RMT-Net++ enhances.
LINTRODUCTION whether to approve or reject credit loan
CREDIT scoring aims to use machine applications.When a customer applies for
learning methods to measure customers’ credit loan, his or her application may be

approved or rejected. If the application is

default probabilities of credit loans [1] [2]

] approved, it will become an approved

[3] [4] [5] . Based on the evaluated credits,
sample, and the customer will get the loan.

financial institutions such as banks and
_ ' ‘ ) After a period, if the customer repays the

online lending companies can decide

credit loan timely, it will be a non-default
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sample; if the customer fails to timely
repay, it will be a default sample. In
contrast, if the application is not approved,
it will become a rejected sample, and the
customer will not get credit loan. Since a
rejected sample gets no loans, we have no
way to observe whether it will be default
or non-default. Above process is illustrated
in Fig. 1. Credit scoring models are usually
constructed based on approved samples, as
we have no ground-truth default/non-
default labels for rejected samples [6] [7]
[8] [9]. The rejection/approval strategies
are usually machine learning models or
expert rules based on the features of
customers, thus approved and rejected
samples share different feature
distributions. This makes us face the
missing-not-at-random selection bias in
data [9] [10] [11]. However, when serving
online, credit scoring models need to infer
credits of loan applications in feature
distributions of both approved and rejected
samples. Training models with such biased
data has severe consequences that the
model parameters are biased [12], i.e., the
predicted relation between input features
and default probability is incorrect. Using
such models on samples across various
data distributions leads to significant
economic losses [7] [13] [14]. Therefore,
for reliable credit scoring, besides the
modeling of approved samples, we also

need to take rejected ones into
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consideration and infer their true credits

[15].

In practice, machine learning
models like Logistic Regression (LR),
Support Vector Machines (SVM), Multi-
Layer Perceptron (MLP) and XGBoost
(XGB) are widely used for modeling credit
scoring data. However, they are affected
by the missing-not-at-random bias in data
to produce reliable and accurate
predictions. To tackle this problem, some
existing approaches address the selection
bias and conduct reject inference from
multiple perspectives. Some approaches
apply the self-training algorithm [16],
which iteratively adds rejected samples
with higher default probability as default
samples to retrain the model [17]. This is a

semisupervised approach [18].

2.LITERATURE SURVEY

Credit scoring is a critical task for
financial institutions, and machine learning
methods have been increasingly employed
to predict default probabilities of credit
loans. Traditional methods like Logistic
Regression  (LR),
Machines (SVM), Multi-Layer Perceptron
(MLP), and XGBoost (XGB) are

Support  Vector

commonly used in this domain. However,
these models often suffer from bias due to
missing-not-at-random (MNAR) data,

where only the accepted samples have
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observable outcomes, and rejected samples

lack default/non-default labels.

To address MNAR bias, several

approaches have been proposed:

Self-Training Algorithms: Self-training
algorithms iteratively classify rejected
samples with high default probabilities as
defaults and retrain the model. This semi-
supervised approach aims to leverage the
unlabeled rejected samples to improve the
model's performance. Examples include
the work by Verstraeten et al. (2015)
which applied self-training for reject
inference in credit scoring.

. Propensity Score Matching: This method
involves estimating the probability of
selection (approval) and using it to adjust
the sample weights. Techniques like
Inverse Probability Weighting (IPW) have
been utilized to mitigate selection bias. For
instance, Hand and Henley (1997)
discussed the application of propensity
score methods for credit scoring.

. Reject Inference Techniques: Reject
inference techniques attempt to infer the
likely outcomes (default/non-default) for
rejected applications. Methods such as
augmentation, reweighting, and parceling
are commonly used. Crook and Banasik
(2004) provided a comprehensive review
of reject inference methods in credit

scoring.
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4. Multi-Task Learning (MTL): Multi-task

learning involves training a model on
multiple related tasks simultaneously. By
sharing information across tasks, MTL can
improve the performance of each task.
Caruana (1997) demonstrated the
effectiveness of MTL in various

applications, including financial risk

assessment.

. Deep Learning Approaches: Recent

advancements in deep learning have
shown promise in handling MNAR data.
Techniques like autoencoders, generative
adversarial networks (GANs), and
attention mechanisms have been explored.
Kingma and Welling (2013) introduced
variational autoencoders (VAEs) for
handling missing data, which has been

adapted for credit scoring.

Despite these advancements, there remains
a gap in effectively modeling MNAR data
in financial credit scoring using multi-task
learning with a reject-aware framework.
Our proposed Reject-aware Multi-Task
Network (RMT-Net) addresses this gap by
incorporating rejection probability into the
learning process. RMT-Net leverages the
strong correlation between
rejection/approval and default/non-default
tasks to improve the accuracy and
reliability of credit scoring models.

Additionally, the extended RMT-Net++

variant adapts to various
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rejection/approval  techniques, further

enhancing the model's robustness.

Our extensive studies on multiple datasets
demonstrate the efficacy of RMT-Net and
RMT-Net++ in handling MNAR data and
improving credit scoring performance for
both accepted and rejected samples. This
novel approach provides a significant
advancement in the field of financial credit
scoring and offers a practical solution to

the challenges posed by MNAR data.

3.PROPOSED SYSTEM

The system that is being suggested utilises
a Reject-aware Multi-Task  Network
(RMT-Net). Based on rejection

probability, RMT-Net learns the weights

3.1 IMPLEMENTAION
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that regulate the information sharing from
the rejection/approval task to the
default/non-default task via a gating
network. Greater information is shared
from the rejection/approval network and
less trustworthy information can be
learned in the default/non-default network
with a higher rejection probability. This
allows us to customise the information
sharing weights in the rejected sample
feature distribution and take into account
the correlation between the rejected
sample and default sample. In addition, we
extend RMT-Net to RMT-Net++, which
models multiple rejection/approval
classification tasks in the MTL framework,
and we take into account scenarios with

multiple rejection/approval techniques.
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S.CONCLUSION

Modeling biased credit scoring data, in
which we only have ground-truth labels for
approved samples and no observations for
rejected samples, is the primary focus of
this paper. We want to improve the
accuracy of the prediction on both
approved and rejected samples because
this bias affects the default prediction's
reliability. Based on both theoretical
analysis and real-world data, we discover a
strong correlation between the
rejection/approval classification task and
the default/non-default classification task

in credit scoring applications. We propose

a novel RMT-Net method that uses a
gating network based on rejection
probabilities to learn the task weights that
control the information sharing from the
rejection/approval task to the default/non-
default task, modeling biased -credit
scoring data for the first time. RMT Net
outperforms a number of cutting-edge
methods from a variety of angles in
empirical experiments conducted on ten
datasets in a variety of settings and
significantly improves on the subpar
results of existing MTL approaches.
Furthermore, we incorporate multiple
rejection/approval strategies into our

RMT-Net++ extension for scenario
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modeling. In a further experiment, RMT-
Net++'s performance in a more complex

multi-policy scenario can be further

enhanced by employing  multiple
strategies.
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