TRAFFIC ROUTE PREDICTION"

A. DURGA DEVI MADAM¹, K. HARIPRIYA²,

¹Assistant professor, MCA DEPT, Dantuluri Narayana Raju College, Bhimavaram, Andharapradesh Email:- adurgadevi760@gmai.com ²PG Student of M.Sc(Computer Science), Dantuluri Narayana Raju College, Bhimavaram, Andharapradesh Email:- priyakommuri179@gmail.com

ABSTRACT

Traffic prediction has always been a challenge for transportation planners and city managers. With the increasing growth of cities and the number of vehicles on the roads, the need for accurate and reliable traffic predictions has become more pressing. In recent years, machine learning has shown great promise in solving this problem.

Traffic prediction involves estimating the future behaviour of traffic in a particular area. This information is useful for a variety of purposes, including **reducing congestion, optimizing transportation systems, and improving road safety**.

In this project centred on predicting alternate routes in response to traffic congestion, we utilize machine learning algorithms such as Support Vector Machines (SVM), Decision Tree, and Random Forest. The performance of each algorithm is meticulously assessed using metrics like accuracy, precision, recall, F1 score, and visualized through confusion matrix graphs. Prior to applying machine learning, a thorough data analysis is conducted through graph visualization to comprehend the traffic flow and congestion across various routes. Despite the comprehensive analysis, SVM exhibits suboptimal performance, while Decision Tree stands out as a robust performer in accurately predicting routes. The Random Forest algorithm is also leveraged to enhance prediction robustness. The evaluation metrics offer a comprehensive understanding of the algorithms' strengths and weaknesses. The dataset utilized for training encompasses detailed information on traffic congestion, ensuring the reliability and accuracy of the route predictions. This project not only contributes to optimizing passenger travel experiences but also holds potential for effective traffic management strategies.

1 INTRODUCTION

In the face of mounting challenges posed by urban traffic congestion, this project attempt to revolutionize transportation with a focus on Traffic Route Prediction. The goal is to empower commuters by offering real-time alternative routes informed by cutting-edge machine learning algorithms, including Support Vector Machines (SVM), Decision Tree, and Random Forest. This initiative aligns with the broader mission of developing smart transportation systems to enhance urban mobility, reduce congestion, and improve the overall efficiency of traffic management. By embracing advanced technologies, we aim to usher in a new era of responsive and adaptive route planning for a seamless and stress-free commuting experience.

In addition to the country's economy, pollution can also be reduced. The government is also investing in the intelligent transportation system (ITS) to solve these issues. The goal of traffic flow prediction is to predict the traffic to the users as soon as possible. Nowadays the traffic becomes really hectic and this cannot be determined by the people when they are on roads.

2 RELEATED WORK

Title: Traffic pattern analysis and traffic state prediction of urban traffic road network based on correlated routes.

Author: Zhuowei Zhang; Weibin Zhang

Abstract:

In this paper, a method for traffic pattern analysis and state prediction for correlated routes in the road network is proposed. First, the concepts of correlated route, correlated route chains, and correlated route sets are defined, and a route correlation degree calculation model that considers route traffic heterogeneity and its judgment criteria are proposed to determine the correlated route sets in the region. Second, we incorporate the self-organizing mapping (SOM) algorithm with Dunn index (DI), named as SOM_DI, to classify the traffic states on the correlated route chain and determine the optimal number of traffic state. The traffic pattern on the correlated path chain is analyzed to obtain the temporal state chains and the spatial state chains. Finally, an algorithm is proposed to select the input spatio-temporal features of the support vector regression (SVR) model and predict the traffic state on the correlated route chain, which is named as STFS_SVR. The simulation results show that the method proposed in this paper can accurately classify the correlated routes of regional traffic and its optimal traffic state.

3 implementation study Existing System:

The current state of traffic management often relies on reactive approaches, leading to delays and suboptimal travel experiences. Existing navigation systems, predominantly based on historical data or rule-based algorithms, struggle to adapt to real-time changes in traffic dynamics. This limitation underscores the need for a more sophisticated and dynamic system that can provide accurate route recommendations, particularly in the face of unpredictable traffic scenarios. Our proposed Traffic Route Prediction system seeks to bridge these gaps, introducing advanced machine learning techniques to offer proactive and adaptive route predictions based on the most current and relevant traffic information.

Disadvantages:

While traffic route prediction systems offer significant benefits, they also come with certain disadvantages and challenges:

1. Data Accuracy: The effectiveness of route prediction heavily relies on the accuracy and real-time availability of traffic data. Inaccurate or outdated data can lead to suboptimal route recommendations, causing frustration for users.

2. Dependency on Technology: Route prediction systems depend on technology such as GPS, sensors, and data networks. Any technical failures or disruptions in these systems can affect the reliability of route predictions.

Proposed System & alogirtham

In envisioning our Traffic Route Prediction system, we embark on a transformative journey to enhance the accuracy and responsiveness of route recommendations. The proposed system integrates Support Vector Machines, Decision Tree, and Random Forest algorithms, each meticulously evaluated using key metrics such as accuracy, precision, recall, and F1 score.

4.1 Advantages:

Predicting traffic routes offers several advantages that can significantly enhance transportation efficiency and convenience:

1. Reduced Congestion: By predicting traffic patterns, authorities can optimize traffic flow, suggesting alternative routes to drivers before congestion builds up. This reduces overall traffic congestion and minimizes delays.

2. Time Savings: Efficient route prediction helps drivers choose the fastest routes based on real-time traffic conditions. This saves commuters time and reduces fuel consumption and emissions associated with idling in traffic.

Fig1: SYSTEM ARCHITECTURE

4.2 Support Vector Machine:

The Support Vector Machine is one of the most widely used Machine Learning algorithms. The main goal of this algorithm is to find the best data split possible. It is used to solve problems involving classification and regression. It can solve both linear and nonlinear separable data, which is one of its main advantages. The separation line is known as the Hyper plane. Support vectors are the points on which the margins are built. The svm algorithm is depicted in the diagram below.

Fig2:- SVM Architure

5 RESULTS AND DISCUSSION

In this project based on traffic congestion we are predicting alternate route for the passengers, to predict route we are training various machine learning algorithms such as SVM, Decision Tree and Random Forest and each algorithm performance is evaluated in terms of accuracy, precision, recall, FSCORE and confusion matrix graph.

Before applying ML algorithms we have performed data analysis via graph visualization to understand traffic flow and congestion in different routes and after analysis we have employed ML algorithms for route prediction.

Among all algorithms SVM performing worst and Decision Tree perform well. To train all algorithms we have utilized traffic congestion dataset which can be downloaded from below KAGGLE URL

https://www.kaggle.com/competitions/tabular-playground-series-mar-2022/data?select=train.csv In below screen we are displaying dataset details:

🕷 EditPlus - [E:\Sridhar\oo	oct23\TrafficPrediction\Dataset\train.csv]	– 0 ×
File Edit View Se	Search Document Project Tools Browser Window Help	_ 8 ×
1	s 🎌 🗉 🚴 ங 🎕 🗶 🗠 ా i 🍾 🔩 🗓 🕂 🖌 🕷 🚍 📾 🗗 🗖 🖪 🗷 🏹 😒	
Directory Cliptext	+1+2+3+4+5+6+7+8	+9+1+2+3+4
[C:] ~	1 row_id,time,x,y,direction,congestion	
🔄 C:\ 🔥	2 0,1991-04-01 00:00:00,0,0,EB,70	
🔄 Users	3 1,1991-04-01 00:00:00,0,0,NB,49	
🔁 Admin	4 2,1991-04-01 00:00:00,0,0,SB,24	
Downloads	5 3,1991-04-01 00:00:00,0,1,EB,18	
Assignment	6 4,1991-04-01 00:00:00,0,1,NB,60	
An Deck over	7 5.1991-04-01 00:00:00,0,1,SB.58	
AnyDesk.exe Assignment.rar	8 6.1991-04-01 00:00:00,0,1,WB,26	
bankstatement3.pdf	9 7,1991-04-01 00:00:00.0.2.EB.31	
Blockchain_EHR.rar	10 8,1991-04-01 00:00:00.0,2,NB,49	
Decentralized Access Con	11 9 1991-04-01 00:00:00 0 2 SB 46	
desktop.ini	12 10 1991-04-01 00:00:00 0 2 WB 29	
Insurance Policy - XXXXXX idk-14.0.2 windowr-x64 k	13 11 1991-04-01 00:00:00 0 3 FB 18	
LinearRegression.rar	14 12 1991-04-01 00:00:00 0 3 NB 16	
LOD - XXXXXXXXXXXX9151	15 13 1991-04-01 00:00:00 0 3 NF 21	
NeuralNetwork.py Part-2 adm final cample d	15 13,155104-01 00:00:00,03,142,21	
Project-16-basepaper-ns2	10 17,159104-01 00.00,00,0,3,50,49	
schnorr.py	17 15,199104-01 00.00.00,0,5,5 W,47	
SCREENS (1).docx SCREENS (2) docx	10 10,199104-01 00.00,00,1 0 EP 74	
SCREENS.docx	19 17,1991-04-01 00:00:00,1,0,EB,74	
Veshare.docx	20 18,1991-04-01 00:00:00,1,0,NB,74	
vit.xml vs. BuildTools eve	21 19,1991-04-01 00:00:00,1,0,NE,43	
WhatsApp Image 2023-09	22 20,1991-04-01 00:00:00,1,0,SB,44	
WhatsApp Image 2023-09	23 21,1991-04-01 00:00:00,1,0,SW,52	
	24 22,1991-04-01 00:00:00,1,0,WB,32	
	25 23,1991-04-01 00:00:00,1,1,EB,44	
	26 24,1991-04-01 00:00:00,1,1,NB,77	
	27 25,1991-04-01 00:00:00,1,1,SB,39	
All Files (*.*) 🗸 🗸		
train.csv	♦ testData.csv	
For Help, press F1		In 121 col 34 848837 00 UNIX ANSI
🗄 🔎 Type here	rre to search 🛛 🝓 🙀 🔁 🛄 📅 💼 🔦 📧 📃	姜 28°C Haze へ ြゅ

In above dataset we have Date, X and Y as latitude and longitude and then direction and then last column contains traffic congestion and by using this module we will train all ML algorithms. After training we will employ test data to predict alternate direction and below is the TEST data.

😴 EditPlus - [E\Sridhar\oct23\TrafficPrediction\Dataset\testData.csv] —	o ×
🛿 File Edit View Search Document Project Tools Browser Window Help	- 8 ×
$\begin{tabular}{cccccccccccccccccccccccccccccccccccc$	
Directory Cliptext+0+2+	4+
Image: System 1 time: xy, ycongestion Image: System 2 1991-04-01 00:00:00, 1, 2, 46 Image: System 3 1991-04-01 00:00:00, 1, 3, 44 Image: System 5 1991-04-01 00:00:00, 2, 3, 70 AnyDest.exe 7 1991-04-01 00:00:00, 2, 3, 70 Assignment.are 1991-04-01 00:00:00, 2, 3, 70 Biockhain; EHR.ard 1991-04-01 00:00:00, 2, 3, 70 Image: System 1991-04-01 00:00:00, 2, 3, 70 7 1991-04-01 00:00:00, 2, 3, 70 7 1991-04-01 00:00:00, 2, 3, 70 7 1991-04-01 00:00:00, 2, 3, 70 7 1991-04-01 00:00:00, 2, 3, 70 7 1991-04-01 00:20:00, 2, 1, 52 Image: System: System 1991-04-01 00:20:00, 2, 1, 52 Image: System: System 13 1991-04-01 00:20:00, 2, 2, 46 1991-04-01 00:20:00, 2, 2, 46 1991-04-01 00:20:00, 2, 2, 42 1991-04-01 00:20:00, 2, 2, 42 1991-04-01 00:20:00, 2, 2, 42 1991-04-01 00:20:00, 2, 2, 42 1991-04-01 00:20:00, 2, 2, 42 1991-04-01 00:20:00, 2, 2, 42 1991-04-01 00:20:00, 2, 2, 42 1991-04-01 00:20:00, 2, 2, 42	
All Files (*.*) V	> .:
+ train.csv	
For Help, press F1 In 16 col 24 16 2C PC ANSI	
🔠 🔎 Type here to search 🛛 🝓 🍪 🗄 💽 🚍 🛱 🕿 🧔 🔤 🧱 🛃 🔤	12:29 11-2023

In above test data we have Date, X and Y location and traffic congestion but direction or route column is not available and this direction will be predicted by ML algorithm.

We have coded this project using JUPYTER notebook and below are the code and output screens with blue color comments.

In above screen we are importing require python classes and packages.

	Home Page - Select or	create a n	×	Untitled - Jupyter Not	teboo	k	× +													-	0	×
\leftarrow C	(i) localhost	:8888/not	ebooks/l	Untitled.ipynb										4 公		CD	£_≡	Ē	- ~~	8		•
	💢 Jupyter	Untitl	ed Last (Checkpoint: 41 minut	tes a	go (ur	nsaved cha	inges)									2		Logout			Q
	File Edit	View	Insert	Cell Kernel	W	idgets	Help							Trust	ed d	/ P	ython 3	(ipyl	kernel) O	1		
	🖹 🕇 💥 🤅	ð 🖪	↑ ↓	🕨 Run 📕 C	₩	Code	,	*														
		warnin	gs.filt	erwarnings(' <mark>ign</mark> o	re')															-	
	Tn [28].	#Loadi	na and	displavina datas	et i	ualue	c)															ž,
	1. [20].	datase datase	t = pd.r t	read_csv("Datase	t/t	rain.	csv")															0
	Out[28]:		row id	time		v di	rection co	ongestion														0
		0	0	1991-04-01 00:00:00	0	0	EB	70														-
		1	1	1991-04-01 00:00:00	0	0	NB	49														-
		2	2	1991-04-01 00:00:00	0	0	SB	24														T
		3	3	1991-04-01 00:00:00	0	1	EB	18														
		4	4	1991-04-01 00:00:00	0	1	NB	60														
								5925														
		848830	848830	1991-09-30 11:40:00	2	3	NB	54														
		848831	848831	1991-09-30 11:40:00	2	3	NE	28														
		848832	848832	1991-09-30 11:40:00	2	3	SB	68														
		848833	848833	1991-09-30 11:40:00	2	3	SW	17														
		848834	848834	1991-09-30 11:40:00	2	3	WB	24														П
		848835	rows × 6	columns																		0
	In [6]:	#plott #datase	ing grap et['time	ph of traffic fl e'] = pd.to_date	OW time	in dij e(dati	fferent d aset['tin	lates me'], infer	r_date	etime_f	format=T	rue)									-	- 60 - 60
۹ 🗄	Type here to searc	:h 1	uès) 🗄 🕡			1	0	w				4	∂ 28°C	Haze		Û P	• •	(€ \$)) EN	IG 12: 01-11	32 -2023	1

In above screen loading and displaying dataset values.

In above graph displaying traffic congestion on different dates where x-axis represents Date and y-axis represents traffic congestion.

In above graph we are finding percentage of different directions or route exists in the dataset.

In above graph we are finding sum of traffic exists in each direction where x-axis represents traffic count and y-axis represents direction.

In above screen we are finding weather dataset contains any missing or null values but this dataset has no missing values.

C i localhost	t :8888/not	ebooks/l	Untitled.ipynb										,	1 m	C D	5∕≡	Ē	<i>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</i>	0		0
🗂 Jupyter	Untitle	ed Last (Checkpoint: an hour	ago	(auto	osaved)										0	L	.ogout			Q
File Edit	View	Insert	Cell Kernel	W	/idget:	s Help								Trusted		ython 3 (ipyker	mel) O			
🖹 🕇 😹 (26	↑ ↓	► Run ■ C	₩	Cod	e 🗸															
	dtype:	int64																			
Tn [29]:	: #now co	onvert d	late column as i	nume	ric -	features hv	senar	tina th	om int	O VP	ar. m	onth. da	, hour, second o	nd minute	ç						ž.
[].	dataset	['time'] = pd.to_date	time'	(data	aset['time'	1)														0
	dataset	['month] = dataset['t	time].dt	t.month															0
	dataset	['hour'] = dataset['t:	ime'].dt	hour															-
			e = dataset	CIM	e].(ac.minute															1
	dataset	['secor	nd'] = dataset[tim	e].(at.second															
0+(20)	dataset dataset	['secor	nd'] = dataset['tim	e].(at.second														ľ	+
Out[29]:	dataset dataset	row_id	nd'] = dataset[time	e x	е]. у (direction con	gestion	year m	ionth (day	hour n	ninute se	cond							ľ	+
Out[29]:	dataset dataset	row_id	nd'] = dataset[time 1991-04-01 00:00:00	• x	e].c y c 0	direction con EB	gestion 70	year m 1991	ionth d	day 1	hour n 0	ninute se O	cond 0							Ĭ	+
Out[29]:	dataset dataset dataset	row_id 0	nd'] = dataset[time 1991-04-01 00:00:00 1991-04-01 00:00:00	• x • x • 0 • 0	e].d	direction con EB NB	gestion 70 49	year m 1991 1991	ionth 4 4	day 1 1	hour n 0 0	ninute se O O	cond 0 0								+
Out[29]:	dataset dataset dataset 1 2	row_id 0 1 2	nd'] = dataset[time 1991-04-01 00:00:00 1991-04-01 00:00:00 1991-04-01 00:00:00	• x • x • 0 • 0 • 0 • 0	y (0 0	direction con EB NB SB FR	gestion 70 49 24 18	year m 1991 1991 1991	ionth 4 4 4 4	day 1 1 1	hour n 0 0	ninute se O O O	cond 0 0								+
Out[29]:	dataset dataset 0 1 2 3 4	row_id 0 1 2 3 4	nd'] = dataset[time 1991-04-01 00:00:00 1991-04-01 00:00:00 1991-04-01 00:00:00 1991-04-01 00:00:00	x x 0 0 0 0 0 0 0 0 0 0 0 0	y (0 0 1	direction con EB NB SB EB NB	gestion 70 49 24 18 60	year m 1991 1991 1991 1991 1991	4 4 4 4 4 4	day 1 1 1 1	hour n 0 0 0	ninute se O O O O O	cond 0 0 0								+
Out[29]:	dataset dataset	row_id 0 1 2 3 4	nd'] = dataset[time 1991-04-01 00:00:00 1991-04-01 00:00:00 1991-04-01 00:00:00 1991-04-01 00:00:00	• x • x • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0	y (0 0 1 1	direction con EB NB SB EB NB	gestion 70 49 24 18 60	year m 1991 1991 1991 1991 1991	4 4 4 4 4 4	day 1 1 1 1	hour n 0 0 0 0	ninute se 0 0 0 0 0	cond 0 0 0 0								+
Out[29]:	0 0 1 1 2 3 4	row_id 0 1 2 3 4 848830	1991-04-01 00 00:00 1991-04-01 00 00:00 1991-04-01 00 00:00 1991-04-01 00 00:00 1991-04-01 00 00:00 1991-04-01 00 00:00 	x x 0 0 0 0 0 0 0 0 0 0 0 0 0 0	y (0 0 1 1 3	direction con EB NB SB EB NB NB	gestion 70 49 24 18 60 54	year m 1991 1991 1991 1991 1991 1991 1991	1000000 4 4 4 4 4 4 4 9	day 1 1 1 1 1 1 30	hour n 0 0 0 0 0 11	ninute su 0 0 0 0 0 0 0 40	cond 0 0 0 0 0 0 0 0 0								+
Out[29]:	0 4ataset dataset 1 2 3 4 848830 848831	row_id 0 1 2 3 4 848830 848831	1991-04-01 00:00:00 1991-04-01 00:00:00 1991-04-01 00:00:00 1991-04-01 00:00:00 1991-04-01 00:00:00 1991-04-01 00:00:00 	x x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	y (0 0 1 1 3 3	direction con EB NB SB EB NB NB NB NE	gestion 70 49 24 18 60 54 28	year m 1991 1991 1991 1991 1991 1991 1991 19	10000000000000000000000000000000000000	day 1 1 1 1 1 1 30 30	hour n 0 0 0 0 0 11 11	ninute se 0 0 0 0 0 0 0 0 40 40	cond 0 0 0 0 0 0 0 0 0 0 0 0								+
Out[29]:	4ataset dataset 0 1 2 3 4 848830 848831 848832	row_id 0 1 2 3 4 848830 848831 848832	1991-04-01 00:00:00 1991-04-01 00:00:00 1991-04-01 00:00:00 1991-04-01 00:00:00 1991-04-01 00:00:00 1991-04-01 00:00:00 	x x <t< td=""><td>y (0 0 1 1 3 3 3 3</td><td>direction con EB NB SB EB NB NB NE SB</td><td>gestion 70 49 24 18 60 54 28 68</td><td>year m 1991 1991 1991 1991 1991 1991 1991 19</td><td>4 4 4 4 4 4 9 9 9</td><td>day 1 1 1 1 1 1 1 30 30 30</td><td>hour n 0 0 0 0 0 11 11 11</td><td>ninute se 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>cond 0 0 0 0 0 0 0 0 0 0 0 0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>+</td></t<>	y (0 0 1 1 3 3 3 3	direction con EB NB SB EB NB NB NE SB	gestion 70 49 24 18 60 54 28 68	year m 1991 1991 1991 1991 1991 1991 1991 19	4 4 4 4 4 4 9 9 9	day 1 1 1 1 1 1 1 30 30 30	hour n 0 0 0 0 0 11 11 11	ninute se 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	cond 0 0 0 0 0 0 0 0 0 0 0 0								+
Out[29]:	4ataset dataset 0 1 2 3 4 4 848830 848831 848832 848833	row_id 0 1 2 3 4 848830 848831 848832 848833	d'] = dataset[iimu 1991-04-01 00:00:01 1991-04-01 00:00:01 1991-04-01 00:00:01 1991-04-01 00:00:01 1991-04-01 00:00:00 1991-09-30 11:40:01 1991-09-30 11:40:01 1991-09-30 11:40:01	* * * <td>y (0 0 1 1 3 3 3 3 3</td> <td>direction con EB NB SB EB NB NB NB NE SB SW</td> <td>gestion 70 49 24 18 60 54 28 68 68 17</td> <td>year m 1991 1991 1991 1991 1991 1991 1991 19</td> <td>eonth 4 4 4 4 4 9 9 9 9 9</td> <td>day 1 1 1 1 1 1 30 30 30 30 30</td> <td>hour n 0 0 0 10 11 11 11 11</td> <td>ninute se 0 0 0 0 0 0 40 40 40 40</td> <td>cond 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>+</td>	y (0 0 1 1 3 3 3 3 3	direction con EB NB SB EB NB NB NB NE SB SW	gestion 70 49 24 18 60 54 28 68 68 17	year m 1991 1991 1991 1991 1991 1991 1991 19	eonth 4 4 4 4 4 9 9 9 9 9	day 1 1 1 1 1 1 30 30 30 30 30	hour n 0 0 0 10 11 11 11 11	ninute se 0 0 0 0 0 0 40 40 40 40	cond 0 0 0 0 0 0 0 0 0 0 0 0 0								+

In above screen we are processing dataset to convert date into Day, Month and Year format so we can analyze traffic day or month wise and in above output we can see now dataset has day, year and month columns.

In above graph we are finding traffic day wise and each different color line represents different days traffic where x-axis is the direction and y-axis is the traffic congestion count.

З	i localhost:8888/	/notebooks/l	Jntitled	ipynb										AN É	2 0) {≞	(± 4	a 🙎		0
	🗂 jupyter Un	titled Last	Checkpc	int: an h	nour age	o (autos	saved)									4	Logo	ıt		Q
	File Edit View	Insert	Cell	Kerr	el	Widgets	He	lp						Trus	ted 🖋	Python	3 (ipykernel)	0		
	8 + % 4 6	* *	► Rur	n 🔳	C »	Code	•	× 1												-
	pic	.snow()				T	- 45 - 0												^	#1
		1		Mon	th Wi	ise Tra	affic C	onges	stion											
		1400000 -	•	1																
		1200000 -			4	*														
						•														
		1000000 -									mon	th								+
	stion	800000 -									-	4 5								1
	onge										•	6 7								
	0	600000 -					•	8			•	8								
		400000 -										9								
		200000 -																		۵
					-															Ø
			SB	NB	EB	WB dire	sw	NE	SE	NW										, têj
.	T			. 6		-	-	<u> </u>	6	5 3				- 2000	Here	. G	0m < 10	ENIC	12:38	=

In above graph we are finding month wise traffic in different directions where x-axis represents direction and y-axis represents traffic congestion and different color dots represents months.

	Home Page - Select or o	treate a n	×	🧧 Untitle	d - Jupyte	r Noteboo	⊳k	× -	-				- 0	×
i ← i c	i localhost:	8888/not	eboo	ks/Untitle	d.ipynb								A* 🟠 🗅 🕼 😪 🕵 …	•
	💢 jupyter	Untitl	ed L	ast Checkp	oint: an h	nour ago	(autos	aved)					n Logout	Q
	File Edit	View	Inse	rt Cell	Kerr	nel W	/idgets	He	lp				Trusted 🖋 Python 3 (ipykernel) O	
	B + % Q	0	^	↓ ► R	un 🔳	C H	Code		~					-
				SB	NB	ËB	WB diree	sw ction	NE	SE	NV	N		±.
	In [30]: Out[30]:	#apply labels encode datase datase datase	ing [, cou r1 = t['di t.dro t	abel end int = np LabelEnd rection pp(['time	coder to unique coder() [] = pd c', 'row	(datase (datase .Series _id'],	rt all t['dir (encod axis =	l non- rectic der1.f = 1,ir	numer n'], it_tr place	ic date return ansfore =True)	<i>a to r</i> _count m(data	numeric ts=True aset['d	values) irection'].astype(str)))#encode all str columns to numeric	☑ ☑ ★
		0	x	y directio	on cong	estion y	year m	nonth	day h	our mir	nute s	econd		
		1	0	0	1	49 1	991	4	1	0	0	0		
		2	0	0	4	24 1	991	4	1	0	0	0		
		3	0	1	0	18 1	991	4	1	0	0	0		
		4	0	1	1	60 1	991	4	1	0	0	0		
			-	11 () 12 ()		222	222.8	-		222.2	(222)	5552		
		848830	2	3	1	54 1	991	9	30	11	40	0		
		848831	2	3	2	28 1	991	9	30	11	40	0		
		848832	2	3	4	68 1	991	9	30	11	40	0		Ø
		848833 848834	2	3 3	6 7	17 1 24 1	991 991	9 9	30 30	11 11	40 40	0		÷ 🔅
. P	Type here to searc	h 1	ų 🖨	6	i 🤇			•		0	w	- 🛃		1

In above screen different directions are in string format so we have converted them into numeric format as ML will take all labels are numeric format so we have converted them into numeric labels.

In above screen we are processing dataset such as normalization and then splitting into train and test where application using 80% dataset for training and 20% for testing and in blue colour we can see train and test size.

С	i localhost:	3888/note	books/Un	titled.ipynt	þ										A®	☆	CD	£^≡	œ	<i>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</i>	
	💭 jupyter	Untitle	d Last Ch	eckpoint: ar	n hour ago	o (auto	osaved))										2	6 9	Logout	
	File Edit	View	nsert	Cell Ke	ernel	Widgets	s H	Help								Trusted		Python 3	(ipyke	mel) O	
	B + % Q		• • 1	Run	C 🕨	Code	le	~													
		80% dat 20% dat	acures aset for aset for	training testing	: 3000) 90 9															
	In [37]:	#define accuracy precision recall fscore	global y = [] on = [] [] []	variables	to sav	ve accu	uracy	and ot	ther met	trics											
	In [38]:	<pre>#function def call p = r = f = a = acco preo reco fsco prin prin prin </pre>	n to ca precisi recall_ f1_scor accurac inacy.ap ision.a pl.appe t(algor t(algor t(algor	Loulate a trics(alg on_score(score(tes e(testY, /_score(t opend(a) opend(p) nd(f) ithm+" Ac ithm+" Re	curacy eccision	rics testy predicc adict,a ;,avera redict) : "+s : "+s : "+s : "+s	Y, pre ct,ave averag age='m)*100 str(a) str(p) str(r)	edict): erage=' ge='mac macro')))))))	'macro') cro') *) * 100) * 100 100											
		prin con fig ax ax	t(algor _matrix _axs = _sns.he set_ylim	<pre>ithm+" FS = confus olt.subpl atmap(con ([0,len(1)</pre>	CORE ion_mat ots(1,2 if_matri abels)]	: "+s rix(te 2,figsi ix, xti)	str(f) estY, ize=(1 icklab)) predic 10, 4)) bels =	ct)) labels,	, ytickla	bels = 1	labels,	annot =	True, cm	ap="vir	idis",	fmt ="	g", ax=	axs[@	9]);	
		axs	0].set_	title(alg	orithm+	" Conf	fusion	n matri	ix")												

In above screen defining function to calculate accuracy and other metrics.

In above screen training SVM algorithm and after training SVM got 30% accuracy and can see other metrics also. In confusion matrix graph x-axis represents Predicted Labels and y-axis represents True Labels and all boxes in diagnol represents correct prediction count and remaining boxes represents incorrect prediction counts and from above graph we can notice SVM predicted many records incorrectly. In ROC curve graph x-axis represents False Prediction and y-axis represents True Predictions and if blue line comes on top of orange line then predictions are correct and if goes below orange line then predictions are incorrect and in above graph we can see only few predictions are correct.

In above screen training decision tree and it got 90.9% accuracy and can see other metrics

and results graph.

□ ⊂ ⊦	Home Page - Select or (create a n	×	🛛 Unti	itled - J	upyter N	Votebo	ok 3	< -	F											-	Ø	×
$\leftarrow \ \ C$	i localhost:	8888/no	tebook	c <mark>s/U</mark> ntit	led.ipy	'nb									A	☆	C	₹≦	œ	~	0		0
	💭 Jupyter	Untit	ed La	st Chec	kpoint:	an hou	ur ago	(autosa	ived)									2	1	Logout			Q
	File Edit	View	Inser	t C	ell	Kernel	V	/idgets	Н	elp						Trusted	F	ython 3 ((ipyker	mel) O			
	B + % 4	b 🖪	^	• •	Run	C	* •	Code		~													-
	In [41]:	#train rf_cls rf_cls #perfo predic #calcu calcul	<pre>mach Ra fit(rm pr t = r late ateMe</pre>	ine le ndomFo X_trai edicti f_cls. predic trics(orestC n, y_ on on predi tion "Rand	g Ran lassi train test ct(X_ accur om Fo	dom F fier() data test) acy a rest"	orest) nd oth , y_te	er me st, p	etrics	to p	redic	t roi	te with less traffic								*	11 () ()
		Random Random Random Random	Fore Fore Fore Fore	st Acc st Pre st Rec st FSC	curacy cisic all CORE	n : 9 n : 8 : 9 : 9	0.066 9.961 1.068 0.493	666666 043150 561151 393129	66666 33158 79579 69748	5 3 9 3													▼ +
		P	lando	om Fo	rest	Conf	usior	n mati	rix	-			-	Random Forest ROC AUC (Curve	_							
		MB -	19 1	0 2		12	2	64	55	- 5	00	1.0	2		1	1							
		SW	5 (52			0	299	8	- 4	00	0.4	3 -		1								
		况 -	0			0	69		1			ate											
		8 -	15 1	24		491	З		L3	- 3	00	itive r	5 -	1									
		M	1						0		~~	e Pos	1 -										
		۳	з :	5 312	2 1				4	- 2	00	Tr											9
		BB -	18 46	51 5		21			9	- 1	.00	0.3	2 -	and the second sec									ŝ
<u>م</u>	Type here to searc	s		<u>8</u>	a i	10					0			<u>_</u>	\$	28°C H	aze 🗸	^ @ ≌		d») ENG	12:4 01-11-	48 •2023	2

In above screen training Random Forest and it got 90.06% accuracy and can see other metrics also and in above confusion matrix graph in diagnol we can see many records are correctly predicted and in all blue boxes only few are incorrectly prediction. In ROC graph also we can see only few predictions are incorrect.

In above graph x-axis represents algorithm names and y-axis represents accuracy and other metrics in different color bars and in all algorithms Random Forest and Decision Tree work best.

In above screen can see all algorithm performance in tabular format.

0	(i) localhost:	8888/notebooks/Untitled.ipynb	A" 🗘	CD	£≡	<u>ن</u> ف 🚱	8		•
1	🗂 Jupyter	Untitled Last Checkpoint: an hour ago (autosaved)			2	Logout			Q
	File Edit	View Insert Cell Kernel Widgets Help	Trusted	P	ython 3	(ipykernel) O			
C	8 + % 4								-
	000[45].	Algorithm Name Accuracy Precision Recall FSCORE						*	
		0 SVM 31.133333 31.004129 32.701809 30.449856							ž.
		1 Decision Tree 90.900000 91.864301 90.611130 91.174872							0
		2 Random Forest 90.066667 89.961043 91.068561 90.493393							
									<u>•</u>
	In [46]:	#function to perform route prediction on test data using congestion #reading test data from test file and then predicting traffic volume dataset							*
		<pre>dataset.fillna(0, inplace = True) #remove missing values temp = dataset.values dataset['time'] = pd.to_datetime(dataset['time'])#convert column to date time dataset['war'] = dataset['time'].dt.month dataset['month'] = dataset['time'].dt.month dataset['hour'] = dataset['time'].dt.mont dataset['cond'] = dataset['time'].dt.mont dataset['cond'] = dataset['time'].dt.monte dataset['cond'] = dataset['time'].dt.monte dataset['cond'] = dataset['time'].dt.monte dataset['cond'] = dataset['time'].dt.second dataset.drop(['time'], axis = 1,inplace=True) testData = dataset.values #normalizing test data testData = scl.transform(testData) #perform prediction on test predict = dt.cls.predict(t(testData)) for i in range(len(predict)): print("Test Data = "+str(temp[i])+" Suggested Route is : "+labels[predict[i]]) print()</pre>							+
		Test Data = ['1001_04_01 00:00:00' 1 2 46] Suggested Route is : WR							~

In above screen we are defining function to read TEST data and then perform route

prediction on test and after execution above block will get below output

🔲 🔶 Home Page - Select or create a n 🗙 🧧 Untitled - Jupyter Notebook 🛛 🗙 🕂					Ø	×
← C () localhost:8888/notebooks/Untitled.ipynb A ^A ☆	CD	౬ౖ≡	<u>ب</u>			0
Jupyter Untitled Last Checkpoint an hour ago (autosaved)		2	Logou			Q
File Edit View Insert Cell Kernel Widgets Help Truste	d I	Python 3 (ipykernel)	0		
<pre>#perform prediction on test predict = dt_cls.predict(testData) for i in range(len(predict)): print("Test Data = "+str(temp[i])+" Suggested Route is : "+labels[predict[i]]) print()</pre>					*	11 0
Test Data = ['1991-04-01 00:00:00' 1 2 46] Suggested Route is : WB						0
Test Data = ['1991-04-01 00:00:00' 1 3 41] Suggested Route is : EB						-
Test Data = ['1991-04-01 00:00:00' 1 3 44] Suggested Route is : NB						+
Test Data = ['1991-04-01 00:00:00' 1 3 44] Suggested Route is : NB						
Test Data = ['1991-04-01 00:00:00' 2 3 70] Suggested Route is : S8						
Test Data = ['1991-04-01 00:00:00' 2 3 29] Suggested Route is : SW						
Test Data = ['1991-04-01 00:00:00' 2 3 26] Suggested Route is : WB						
Test Data = ['1991-04-01 00:20:00' 0 0 70] Suggested Route is : EB						
Test Data = ['1991-04-01 00:20:00' 2 1 29] Suggested Route is : NW						
Test Data = ['1991-04-01 00:20:00' 2 1 34] Suggested Route is : SE						
Test Data = ['1991-04-01 00:20:00' 2 1 52] Suggested Route is : SW						U
Test Data = ['1991-04-01 00:20:00' 2 1 37] Suggested Route is : WB						Ø
Test Data = ['1991-04-01 00:20:00' 2 2 36] Suggested Route is : EB					-	ŝ
🕂 🔎 Type here to search 🛛 🥧 🙀 💽 📃 🛱 🖻 💿 🧕 💷 🦉 🔤 🖉	Haze	^ @ %) 🦟 (ሳ)) ነ	NG 12 01-11	52 -2023	2

In above predictions in square bracket we can see the TEST data where last value is traffic congestion and based on that congestion we can see suggested Route as WB or NB or SE etc. **Note:** The direction of travel of the roadway. EB indicates "eastbound" travel, for example, while SW indicates a "southwest" direction of travel.

6. CONCLUSION AND FUTURE WORK

CONCLUSION

In conclusion, our Traffic Route Prediction project represents a significant leap forward in addressing the persistent challenges of urban traffic congestion. Through the integration of advanced machine learning algorithms such as Support Vector Machines, Decision Tree, and Random Forest, we have endeavored to provide commuters with real-time alternative routes, enhancing the overall efficiency of traffic management. The comprehensive evaluation of these algorithms using accuracy, precision, recall, and F1 score metrics has revealed the provess of Decision Tree in predicting routes amid dynamic traffic conditions.

The analysis, coupled with graph visualization techniques, has afforded us deeper insights into traffic flow dynamics, enriching the predictive capabilities of our system. While the Support Vector Machines exhibited suboptimal performance, the robustness and adaptability of our proposed system, especially leveraging the strengths of the Decision Tree algorithm, showcase the potential to revolutionize route planning in urban environments.

7. REFRENCES

1. W. Ma, X. Li and X. Yang, "Incidence Degree Model of Signalized Intersection Group Based on Routes (Chinese version)", *Journal of Tongji University*, vol. 37, no. 11, pp. 1462-1466, 2009.

2. H. Wu, "Research on the Key Techniques of Bus Signal Coordinated Optimization (Chinese version)", *South China University of Technology*, 2017.

3. J. Yang, X. Guo, Y. Li, S. He and Y. Liu, "Modeling Route Correlation Degree of Urban Signalized Intersection Group (Chinese version)", *Journal of Transportation Systems Engineering and Information Technology*, vol. 12, no. 1, pp. 55-62, 2011.

4. Q. Liu, Y. Cai, H. Jiang, J. Lu and L. Chen, "A Traffic state prediction using ISOMAP manifold learning", *Physica A: Statistical Mechanics and its Applications*, vol. 506, pp. 532-541, 2018.

5. H. Zou, Y. Yue, Q. Li and Y. Shi, "A spatial analysis approach for describing spatial pattern of urban traffic state", *13th International IEEE Conference on Intelligent Transportation Systems*, pp. 557-562, 2010.

6. C. Deng, F. Wang, H. Shi and G. Tan, "Real-Time Freeway Traffic State Estimation Based on Cluster Analysis and Multiclass Support Vector Machine", *2009 International Workshop on Intelligent Systems and Applications*, pp. 1-4, 2009.

7. A. Jirayusakul, "Improve the SOM classifier with the Fuzzy Integral technique", 2011 Ninth International Conference on ICT and Knowledge Engineering, pp. 1-4, 2012.

8. M. Tan, S. C. Wong, J. Xu, Z. Guan and P. Zhang, "An Aggregation Approach to Short-Term Traffic Flow Prediction", *IEEE Transactions on Intelligent Transportation Systems*, vol. 10, no. 1, pp. 60-69, 2009.

9. M. Ni, Q. He and J. Gao, "Forecasting the Subway Passenger Flow Under Event Occurrences with Social Media", *IEEE Transactions on Intelligent Transportation Systems*, vol. 18, no. 6, pp. 1623-1632, 2017.

10.X. Feng, X. Ling, H. Zheng, Z. Chen and Y. Xu, "Adaptive Multi-Kernel SVM With Spatial-Temporal Correlation for Short-Term Traffic Flow Prediction", *IEEE Transactions on Intelligent Transportation Systems*, vol. 20, no. 6, pp. 2001-2013, 2019.

11.Y. Hou, P. Edara and C. Sun, "Traffic Flow Forecasting for Urban Work Zones", *IEEE Transactions on Intelligent Transportation Systems*, vol. 16, no. 4, pp. 1761-1770, 2015.