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Abstract:  

Frequent Item set mining is one of the enormous 

operations which reestablish all thing sets in the 

trade table that occur as a subset of decided 

segment of the trades. The current counts 

disregard to deal with unremitting thing sets 

successfully on colossal data, since they either 

require various pass analyzes on the table or 

manufacture complex data structures which 

ordinarily outperform the open memory on 

massive data. This paper proposes a novel pre 

computation based item set mining (PFIM) count 

to enlist the persistent thing sets quickly on 

enormous data. PFIM views the trade table as 

two segments: a gigantic old table taking care of 

chronicled data and a by and large minimal new 

table taking care of as of late delivered data. 

PFIM first pre-builds up the semi progressive 

thing sets on the old table whose supports are 

over the lower-bound of the sensible assistance 

level. Given the foreordained assistance limit, 

PFIM can quickly reestablish the important 

ordinary thing  

 

sets on the table by utilizing the semi unremitting 

thing sets. Three pruning rules are acquainted 

with decrease the size of the included up-and-

comers. A slow update method is devised to 

capably re-assemble the semi consistent thing 

sets when the tables are consolidated. The 

expansive test outcomes, coordinated on 

designed and veritable datasets, show that PFIM 

has an immense favored situation over the 

current counts and run two critical degrees 

speedier than the latest estimation.  

1. INTRODUCTION  

Frequent item set mining is a significant activity, 

which has been broadly concentrated in 

numerous useful applications, for example, 

information mining, programming bug 

discovery, spatiotemporal information 

investigation and natural examination. Given an 

exchange table, wherein every exchange contains 

a lot of things, successive item set mining 
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restores all arrangements of things whose 

frequencies (likewise alluded to as help of the 

arrangement of things) in the table are over a 

given limit.   

Because of its functional significance, since 

initially proposed successive item set mining has 

gotten broad attentions and numerous 

calculations are proposed. The current 

continuous item set mining calculations can be 

classified into two gatherings: applicant age 

based algorithms and design development based 

calculations. The up-and-comer age based 

calculations first generate up-and-comer item 

sets and these competitors are approved against 

the exchange table to recognize incessant item 

sets. The counter droning property is used in 

competitor age based calculations to prune 

search space. However, the up-and-comer-age 

based calculations require different pass table 

sjars and this will acquire a high I/O cost on 

huge information. The example development 

based calculations don't produce up-and-comers 

unequivocally. They build the unique tree-based 

information structures to keep the fundamental 

data about the incessant item sets of the 

exchange table. By utilization of the build ed 

information structures, the successive item sets 

can be figured productively. Notwithstanding, 

design development based calculations have the 

issue that the built information structures are 

unpredictable and typically surpass the 

accessible memory on monstrous information. 

To summarize, the current calculations can't 

process continuous item sets on gigantic 

information productively.  

In successive item set mining, the quantity of the 

continuous item sets regularly is touchy to the 

estimation of the help limit. In the event that the 

help limit is little, there will be an enormous 

number of successive item sets and it is hard for 

the clients to settle on productive choices. 

Despite what might be expected, if the help edge 

is enormous, it is conceivable that no successive 

item sets can be found or the intriguing item sets 

may be missed. Along these lines, a legitimate 

help edge is essential for the reasonable 

continuous item set mining and the clients 

regularly need to perform incessant item set 

digging for a few times before the acceptable 

help edge is resolved. The cycle regularly is 

intuitive. On gigantic information, the current 

calculations regularly need a long execution time 

to process successive item sets and this will 

influence clients' working efficiency genuinely. 

The focal point of this paper is to locate another 

effective calculation to figure successive item 

sets on monstrous information rapidly.   

One helpful stunt, which is embraced to 

accelerate the execution in the current 

calculations, is to reuse the work done in the 

tallying activity of the shorter item sets for that 

of the more drawn out item sets. In this paper, 

we need to use this reuse thought to an a lot 

bigger degree. In ordinary huge information 

applications, with the expanding information 

volume and the plate I/O bottleneck, information 
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typically is put away in read/attach just mode. 

Accordingly, the general informational collection 

can be separated into two sections: the a lot 

bigger old informational collection putting away 

the recorded information, and the overall little 

new informational collection putting away the 

recently produced information. In light of the 

depiction over, this paper devises another PFIM 

calculation (Pre-computation-based Frequent 

Item set Mining calculation) on enormous 

information, which uses the pre-developed 

regular item sets on the old informational 

collection to return the successive item sets 

rapidly. Since the too little estimation of help 

limit will produce too many incessant item sets, 

we accept in this paper that there exists a 

lowerbound! of the help limit determined by the 

clients in down to earth applications. Due to the 

genuine/annex just mode, given the old table TO, 

PFIM first pre-builds the continuous item sets 

(allude to as semi incessant item sets in this 

paper) whose supports are no not exactly! The 

new exchanges are collected in the new table T . 

Taking advantage of the pre-built semi 

continuous item sets, given the predetermined 

help limit, PFIM can figure the regular item sets 

on TO [ T rapidly. During the time spent 

execution of PFIM, three pruning rules are 

contrived in this paper to diminish the quantity 

of up-and-comer incessant item sets. A steady 

update procedure is proposed in this paper to 

rapidly refresh the semi regular item sets when 

To and T are blended. The broad examinations 

are led on engineered and genuine informational 

collections. The test results show that, PFIM 

outflanks the current calculations essentially; it 

runs two significant degrees quicker than the 

most recent calculation.  

2. LITERATURE SURVEY  

Candidate-Generation-Based Algorithms  

  

The candidate-generation-based algorithms 

firstly generate the candidates of the frequent 

item sets, then the candidates are validated 

against the transaction table, and the frequent 

item sets are discovered.  

Apriori algorithm adopts a level-wise execution 

mode. It uses the downward closure property, 

i.e. any super-set of an infrequent item set must 

also be infrequent, to prune the search space. 

By a pass of scan on the transaction table, it 

first counts the item occurrences to find the 

frequent 1-item sets F1. Subsequently, the 

frequent k-item sets in Fk are used to generate 

the candidates Ck+1 of the frequent (k + 1)-item 

sets. Another pass of scan is needed to compute 

the supports of candidates in Ck+1 to find the 

frequent (k + 1)-item sets Fk+1. This process 

iterates similarly until the Fk+1 is empty. Apriori 

algorithm often needs multiple passes over 

table, it will incur a high I/O cost on massive 

data.  

  
Savasere et al. propose Partition algorithm to 

generate frequent item sets by reading the 
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transaction table at most two times. The 

execution of Partition consists of two stages. In 

the first stage, Partition algorithm divides the 

table into a number of non-overlapping 

partitions in terms of the allocated memory, and 

the local frequent item sets for each partition 

are computed. All the local frequent item sets 

are merged at the end of first stage to generate 

the candidates of frequent item sets. In the 

second phase, another pass over table is 

performed to acquire the support of the 

candidates and the global frequent item sets can 

be discovered. The useful property adopted in 

Partition is that, every global frequent item sets 

must be appeared in local frequent item sets of 

at least one partition. Partition algorithm 

utilizes vertical table representation of 

transaction table and the support counting is 

performed by recursive TID (transaction 

identifier) list intersection. In the first phase, 

Partition may generate many false positives, i.e. 

the item sets are frequent locally but not 

frequent globally. Therefore, it needs another 

table scan to remove the false positives.  

  
Zaki proposes another vertical mining algorithm 

E-clat. Eclat decomposes the original search 

space by a lattice-theoretic approach into smaller 

sublattices, each of which is a group of item sets 

with a common prefix (referred to as prefix-

based equivalence class). Depending on the 

allocated memory size, Eclat can recursively 

partition large classes into smaller ones until 

each class can be maintained entirely in the 

memory. Then, each class is processed 

independently in the breath-first fashion to 

compute the frequent item sets. Eclat processes 

the sublattices sequentially one by one and does 

not need post-processing overhead as Partition 

algorithms. The main problem of Eclat is that 

when the intermediate results of vertical TID 

lists can become too large for memory, 

especially in dense database, the performance of 

Eclat starts to suffer. In order to solve the 

problem, Zaki et al. devise a novel vertical data 

representation called diffset, which keeps 

differences in the TIDs of a candidate pattern 

from its generating frequent patterns. A variation 

(dEclat) of Eclat by diffset is presented, which 

performs a depth-first search of the enumeration 

tree. By the incorporation of diffset, the memory 

requirement of dEclat is cut down drastically.  

  

Deng et al.  propose PPV algorithm to integrate 

the advantages of vertical mining and 

FPgrowth. PPV utilizes a coding prefix tree 

structure PPC-tree to store the table. Each node 

in PPC-tree is associated with pre-post code via 

the pre-order and post-order traversal on the 

PPC-tree. Each frequent item can be  

represented by a node-list, i.e. the list of 

PrePost code consisting pre-order code, post-

order code and the count of nodes registering 

the frequent item. PPV fully uses candi-date 

generation to discover frequent item sets, i.e. 

the node-lists of the candidate item sets of 
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length (k + 1) are generated by intersecting 

node-lists of frequent item sets of length k, then 

the frequent item sets can be reported. PPV can 

achieve a high execution efficiency since (1) 

the node-list is more compact than the vertical 

structure, (2) the support counting is 

transformed into the intersection of node-lists, 

(3) the ancestor-descendant relationship of two 

nodes can be verified efficiently by their 

prepost codes. proposes PrePost to improve 

PPV. The core difference between PrePost and 

PPV is that PrePost can directly find frequent 

item sets without generating candidates in some 

cases by using the single path property of Nlist. 

points out that node-list and N-list need to 

encode each node of PPC-tree with both 

preorder code and post-order code, thus they 

are memory-consuming. A more efficient data 

structure, Node Set, is adopted, which only 

requires the pre-order code (or post-order code) 

of each node. And based on Node Set, an 

algorithm FIN is devised to compute frequent 

item sets. The algorithm dFIN is presented  to 

improve FIN further. The algorithm dFIN uses 

an enhanced Node Set, DiffNode Set, which is 

combined by the idea of diffset. Aryabarzan et 

al.  find that the calculation of the difference 

between DiffNode Set takes a long time on 

some tables. They propose a new data structure, 

NegNode Set, which also uses prefix tree.  

NegNode Set employs a set-

bitmaprepresentation-based encoding model for 

nodes. By using NegNode Set data structure, 

negFIN is proposed. Three key advantages of 

negFIN are: (1) employing bitwise operator to 

generate new sets of nodes,  

  

Pattern-Growth-Based Algorithms Pattern-

growth-based algorithms do not generate 

candidate item sets explicitly but compress the 

required information for frequent item sets in 

specific data structure. The frequent item sets 

can be acquired quickly with the notion of 

projected databases, a subset of the original 

transaction database relevant to the enumeration 

node.  

  

Agarwal et al. present DepthProject algorithm 

to mine long item sets in databases. 

DepthProject examines the nodes of the 

lexicographic tree in depth-first order. The 

examination process of a node refers to the 

support counting of the candi-date extension of 

the node. During the search, the projected 

transaction sets are maintained for some of the 

nodes on the path from the root to the node P 

currently being extended. Normally, the 

projected transaction sets only contain the 

relevant part of the transaction database for 

counting the support at the node P. In the 

process of depth-first search, the projected 

database can be reduced further at the children 

of P and DepthProject can reuse the counting 

work of its previous exploration. At the lower 

levels of the lexicographic tree, a specialized 
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counting technique called bucketing is used to 

substantially improve the counting time.  

  

Han et al. propose a FP-tree-based FPgrowth 

algorithm to mine the complete set of frequent 

patterns by pattern fragment growth. FP-tree 

(frequent-pattern tree) is a compact prefix-based 

trie structure to store the essential information 

about frequent patterns. In each transaction, 

only frequent length-1 items, which are sorted 

with the descending order of support, are used 

to construct the FP-tree. Then the FP-growth 

algorithm works on FP-tree rather than on the 

original database to mine frequent patterns. FP-

growth algorithm starts with a frequent length-1 

pattern (initial suffix pattern), and the set of 

frequent items cooccurring with the suffix 

pattern is extracted as conditional-pattern base, 

which is then constructed as conditional FP-

tree. With the current suffix pattern and the 

conditional FPtree, if the conditional FP-tree is 

not empty, FP-growth performs mining 

recursively. The frequent patterns are acquired 

by concatenating the new ones generated from 

the conditional FP-tree and the suffix pattern. 

FP-growth transforms the problem of finding 

long frequent patterns to looking for shorter 

ones and then concatenating the suffix. An 

additional optimization is proposed for 

FPgrowth, i.e. if all the nodes of the FP-tree lie 

on a single path, the frequent patterns can be 

generated by enumeration of all the 

combinations of the sub-paths with the support 

being the minimum support of the item sets 

contained in the sub-path.  

  

Grahne et al. find out that about 80 percent of 

the CPU time in frequent item set mining is used 

for traversing FP-trees. A special data structure, 

FP-array, is devised. Given an item set of m 

items, FP-array is a (m 1) (m 1) matrix, where 

each element of the matrix corresponds to the 

counter of an ordered pair of items. By the 

special data structure, a new FPgrowth* is 

proposed, which can reduce the traversal time on 

FP-tree and speed up the FPgrowth method 

significantly.  

  

  

3. PROPOSED WORK  

Proposes a novel pre-computation-based 

frequent item set mining (PFIM) algorithm to 

compute the frequent item sets quickly on 

massive data. PFIM treats the transaction table 

as two parts: the large old table storing historical 

data and the relatively small new table storing 

newly generated data. PFIM first pre-constructs 

the quasi-frequent item sets on the old table 

whose supports are above the lower-bound of the 

practical support level. Given the specified 

support threshold, PFIM can quickly return the 

required frequent item sets on the table by 

utilizing the quasi-frequent item sets. Following 

methods are presented to improve the efficiency 

of the system in mining data sets very fast.  
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i. Intuitive Idea  

ii. Pre-computation Operation  

iii. Basic Process iv.  Pruning 

Operation v.  Update 

Operation  

   

i. Intuitive Idea  

Generally the number of frequent item sets is 

very sensitive to the value of minsup. If the 

value of minsup is too small, the number of 

frequent item sets will be so large that the users 

can become overwhelmed with too many 

results and it is difficult for users to find the 

really useful information from them. Therefore, 

in this paper, we assume that there exists a 

lower-bound for the value of minsup in 

practical applications. During the time interval 

between two consecutive merging, TO remains 

unchanged and only T updates frequently. 

Under such circumstances, given the frequent 

item set mining with varying support 

thresholds, why not we keep the pre-computed 

item sets whose support values in TO are no 

less than ! And only compute the required 

frequent item sets considering the existence of 

T. In this way, the work done for TO can be 

reused for the entire frequent item set mining 

in a long enough time.   

ii. Pre-computation Operation  

  

This part describes the pre-computation 

operation to generate the required item sets on 

the large old transaction table To whose 

supports are no less than !. The required item 

sets here are referred to as quasi-frequent item 

sets, distinguishing from the frequent item sets 

with the support threshold minsup specified by 

users. Let tno be the number of transactions in 

TO and tn be the number of transactions in T . 

Since the size of TO is much large, usually 

exceeds the size of the allocated memory. 

Therefore, the process of pre-computing the 

quasi-frequent item sets consists of two stages: 

candidate generation and result refinement.  

  

In the stage of candidate generation, we retrieve 

the transactions in To sequentially and maintain 

the retrieved transactions in an in-memory 

buffer BU F , whose size is set according to the 

size of the allocated memory. If BUF is full, we 

can compute the local quasi-frequent item sets 

in BUF by the current vertical frequent item set 

mining algorithms. The quasi-frequent item sets 

corresponding to current BUF are kept in a file.  

Then we empty BU F and continue the 

sequential scan for the next iteration. The 

process is similarly executed until all 

transactions in TO is retrieved and all local 

quasi-frequent item sets are generated.  

In the stage of result refinement, we first read 

all the local quasi-frequent item sets into the 

memory. Then another sequential scan on TO be 

Journal of Engineering Sciences Vol 15 Issue 07,2024

ISSN:0377-9254 jespublication.com Page 608



performed to compute support count, i.e. the 

absolute occurrence number, for each local 

quasi-frequent item set.  

  

 iii.  Basic Process  

Sequential scan on new table:  

PFIM first retrieves the transactions in T1. ∀ t1 ∈T1, let t1 be the currently retrieved 

transaction. ∀i∈t1, i is an item in t1, we 

increase the count of i by 1 (initial value is 0). 

Due to its relatively small size of T1 and the 

simple computation, this sequential scan can be 

executed quickly. We use an array cnt1 to keep 

these counts. ∀i ∈ U, cnt1[i] is the count of 

item i in T1, cnt1[i] = 0 if i does not appear in 

any transaction in T1. The value of mas1 is the 

maximum support count for all items in T1.  

Sequential scan on quasi-frequent item sets  

Then, PFIM begins to retrieve Fqf .∀t ∈ Fqf, let 

t be the currently retrieved quasi-frequent item 

set in Fqf. The quasi-frequent item sets in Fqf 

can be divided into three classes:  

(1) definitely  belonging  to  the  frequent  

item sets,  

(2) definitely not belonging to the frequent 

item sets,  

(3) Possibly belonging to the frequent item 

sets.  

Given|t.IS| = 1 and t.IS = {i}, if t.SUP+cnt1[i]  

≥[n×minsup], t.IS is frequent, otherwise, t.IS is 

not frequent. Given|t.IS|≥ 2, if t.SUP 

≥[n×minsup], t.IS is frequent obviously, 

otherwise, if t.SUP+mas1< [n×minsup], t.IS 

certainly not a frequent item set. In other cases, 

t may be a frequent item set, depending on the 

transactions in T1, and PFIM maintains t in a 

set  

STCAD  

Increase supports for item sets  

When all quasi-frequent item sets are retrieved 

already, PFIM needs to increase the support 

counts of quasi-frequent item sets in STCAD by 

their counts in T1, this can be done by a 

sequential scan on T1., PFIM retrieves B 

transactions from T1. For the current iteration, 

the transactions maintained in memory are 

transformed into vertical representation, i.e. each 

item is associated with the list of identifiers 

(TID) of transactions containing the item. ∀t ∈STCAD and t.IS = {ij1,ij2,...,ija}, the number 

of transactions in BUF1 containing t.IS is |Ta =1 

ijb .tlist|, where ijb.tlist is the TID list 

corresponding to the item ijb.  

  

iv. Pruning Operation  

PFIM can reuse the pre-computation result of T0 

and reduce the execution cost significantly. In 

this part, we discuss how to improve PFIM 
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further to speed up its execution by pruning 

operation.  

One main part of the cost in PFIM is to compute 

the support counts of the item sets of STCAD in 

T1. Therefore, if we can reduce the number of 

item sets in STCAD in step 2, the counting cost 

in T1 can be decreased. Use the maximum count 

mas1 of the single item in T1 to determine the 

support count range of the possible frequent item 

sets. Obviously, if we can narrow down the 

support count range, the size of STCAD can be 

reduced. As described in the process of step 2, 

PFIM can determine directly whether the 

quasifrequent 1-itemsets in Fqf are frequent item 

sets. Therefore, STCAD only needs to maintain 

the quasi-frequent item sets which contain at 

least two items. At the end of step2, PFIM 

maintains the possible frequent item sets in 

STCAD  

v. Update Operation  

When the size of T1 reaches a certain threshold, 

for example, 5% of the size of TO, the 

transactions in T1 and TO are merged. At this 

point, the quasi-frequent item sets in Fqf needs 

to be updated also. But the total re-construction 

can be expensive. Therefore, in this paper, a new 

an incremental update strategy is proposed, 

which utilizes the existing information computed 

already, to speed up the update operation.  

The goal of the update operation is to generate 

the quasi-frequent item sets on T given the 

support level ω. The local quasi-frequent item 

sets of TO are kept in Fqf, O, First we need to 

add the occurrences of the local quasi-frequent 

item sets of Fqf, O in T1. Then, the local 

quasifrequent item sets in Fqf, O, are written into 

the new file Fqf, the local quasi-frequent item 

sets of T1 are kept in Fqf ,1. In order to avoid 

duplicate computation, the local quasi-frequent 

item sets in Fqf, 1, which have been contained in 

Fqf, O, are removed before the support counting. 

The support counts of the local quasi-frequent 

item sets in Fqf, 1 are calculated by another scan 

on TO and T1. The number of the item sets in 

Fqf, 1 can be reduced significantly by the 

containment checking in Fqf, O. The 

computation cost of adding the support counts of 

item sets in T1 and TO can be lowered 

accordingly. Therefore, the incremental update 

strategy can run much faster than the total 

reconstruction strategy, which also is verified in 

the experiments.  

  

4. CONCLUSION  

This paper thinks about the issue of figuring 

incessant item sets on huge information. It is 

discovered that the current algorithms can't 

perform regular item set mining on huge 

information effectively. This paper uses reusing 

the work done beforehand and devises a 

precalculation based PFIM calculation to rapidly 

secure the incessant item sets on enormous 

information. The exchange table comprises of 
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two sections: the enormous old table and the 

generally little new table. By the semi regular 

item sets pre-registered on the old table, PFIM 

can report the incessant item sets on huge 

information effectively. Three pruning rules are 

proposed in this paper to accelerate the execution 

of PFIM. The gradual update technique is 

introduced to re-build the semi continuous item 

sets immediately when combining the old table 

and the new table. The broad test results show 

that PFIM has a huge performance advantage 

over the current  

calculations  
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