
 Frequent Itemsets Mining with Differential Privacy over Large-
scale Data

Ms.V.R.SWETHA1, P.POOJITHA2

1Associate Professor, Dept of MCA, Audisankara College of Engineering &Technology
(AUTONOMOUS), Gudur, Tirupati (Dt), AP, India

2PG Scholar, Dept of MCA, Audisankara College Of Engineering &Technology
(AUTONOMOUS) Gudur, Tirupati (Dt), AP, India.

Abstract:

Frequent Item set mining is one of the enormous

operations which reestablish all thing sets in the

trade table that occur as a subset of decided

segment of the trades. The current counts

disregard to deal with unremitting thing sets

successfully on colossal data, since they either

require various pass analyzes on the table or

manufacture complex data structures which

ordinarily outperform the open memory on

massive data. This paper proposes a novel pre

computation based item set mining (PFIM) count

to enlist the persistent thing sets quickly on

enormous data. PFIM views the trade table as

two segments: a gigantic old table taking care of

chronicled data and a by and large minimal new

table taking care of as of late delivered data.

PFIM first pre-builds up the semi progressive

thing sets on the old table whose supports are

over the lower-bound of the sensible assistance

level. Given the foreordained assistance limit,

PFIM can quickly reestablish the important

ordinary thing

sets on the table by utilizing the semi unremitting

thing sets. Three pruning rules are acquainted

with decrease the size of the included up-and-

comers. A slow update method is devised to

capably re-assemble the semi consistent thing

sets when the tables are consolidated. The

expansive test outcomes, coordinated on

designed and veritable datasets, show that PFIM

has an immense favored situation over the

current counts and run two critical degrees

speedier than the latest estimation.

1. INTRODUCTION

Frequent item set mining is a significant activity,

which has been broadly concentrated in

numerous useful applications, for example,

information mining, programming bug

discovery, spatiotemporal information

investigation and natural examination. Given an

exchange table, wherein every exchange contains

a lot of things, successive item set mining

Journal of Engineering Sciences Vol 15 Issue 07,2024

ISSN:0377-9254 jespublication.com Page 602

restores all arrangements of things whose

frequencies (likewise alluded to as help of the

arrangement of things) in the table are over a

given limit.

Because of its functional significance, since

initially proposed successive item set mining has

gotten broad attentions and numerous

calculations are proposed. The current

continuous item set mining calculations can be

classified into two gatherings: applicant age

based algorithms and design development based

calculations. The up-and-comer age based

calculations first generate up-and-comer item

sets and these competitors are approved against

the exchange table to recognize incessant item

sets. The counter droning property is used in

competitor age based calculations to prune

search space. However, the up-and-comer-age

based calculations require different pass table

sjars and this will acquire a high I/O cost on

huge information. The example development

based calculations don't produce up-and-comers

unequivocally. They build the unique tree-based

information structures to keep the fundamental

data about the incessant item sets of the

exchange table. By utilization of the build ed

information structures, the successive item sets

can be figured productively. Notwithstanding,

design development based calculations have the

issue that the built information structures are

unpredictable and typically surpass the

accessible memory on monstrous information.

To summarize, the current calculations can't

process continuous item sets on gigantic

information productively.

In successive item set mining, the quantity of the

continuous item sets regularly is touchy to the

estimation of the help limit. In the event that the

help limit is little, there will be an enormous

number of successive item sets and it is hard for

the clients to settle on productive choices.

Despite what might be expected, if the help edge

is enormous, it is conceivable that no successive

item sets can be found or the intriguing item sets

may be missed. Along these lines, a legitimate

help edge is essential for the reasonable

continuous item set mining and the clients

regularly need to perform incessant item set

digging for a few times before the acceptable

help edge is resolved. The cycle regularly is

intuitive. On gigantic information, the current

calculations regularly need a long execution time

to process successive item sets and this will

influence clients' working efficiency genuinely.

The focal point of this paper is to locate another

effective calculation to figure successive item

sets on monstrous information rapidly.

One helpful stunt, which is embraced to

accelerate the execution in the current

calculations, is to reuse the work done in the

tallying activity of the shorter item sets for that

of the more drawn out item sets. In this paper,

we need to use this reuse thought to an a lot

bigger degree. In ordinary huge information

applications, with the expanding information

volume and the plate I/O bottleneck, information

Journal of Engineering Sciences Vol 15 Issue 07,2024

ISSN:0377-9254 jespublication.com Page 603

typically is put away in read/attach just mode.

Accordingly, the general informational collection

can be separated into two sections: the a lot

bigger old informational collection putting away

the recorded information, and the overall little

new informational collection putting away the

recently produced information. In light of the

depiction over, this paper devises another PFIM

calculation (Pre-computation-based Frequent

Item set Mining calculation) on enormous

information, which uses the pre-developed

regular item sets on the old informational

collection to return the successive item sets

rapidly. Since the too little estimation of help

limit will produce too many incessant item sets,

we accept in this paper that there exists a

lowerbound! of the help limit determined by the

clients in down to earth applications. Due to the

genuine/annex just mode, given the old table TO,

PFIM first pre-builds the continuous item sets

(allude to as semi incessant item sets in this

paper) whose supports are no not exactly! The

new exchanges are collected in the new table T .

Taking advantage of the pre-built semi

continuous item sets, given the predetermined

help limit, PFIM can figure the regular item sets

on TO [T rapidly. During the time spent

execution of PFIM, three pruning rules are

contrived in this paper to diminish the quantity

of up-and-comer incessant item sets. A steady

update procedure is proposed in this paper to

rapidly refresh the semi regular item sets when

To and T are blended. The broad examinations

are led on engineered and genuine informational

collections. The test results show that, PFIM

outflanks the current calculations essentially; it

runs two significant degrees quicker than the

most recent calculation.

2. LITERATURE SURVEY

Candidate-Generation-Based Algorithms

The candidate-generation-based algorithms

firstly generate the candidates of the frequent

item sets, then the candidates are validated

against the transaction table, and the frequent

item sets are discovered.

Apriori algorithm adopts a level-wise execution

mode. It uses the downward closure property,

i.e. any super-set of an infrequent item set must

also be infrequent, to prune the search space.

By a pass of scan on the transaction table, it

first counts the item occurrences to find the

frequent 1-item sets F1. Subsequently, the

frequent k-item sets in Fk are used to generate

the candidates Ck+1 of the frequent (k + 1)-item

sets. Another pass of scan is needed to compute

the supports of candidates in Ck+1 to find the

frequent (k + 1)-item sets Fk+1. This process

iterates similarly until the Fk+1 is empty. Apriori

algorithm often needs multiple passes over

table, it will incur a high I/O cost on massive

data.

Savasere et al. propose Partition algorithm to

generate frequent item sets by reading the

Journal of Engineering Sciences Vol 15 Issue 07,2024

ISSN:0377-9254 jespublication.com Page 604

transaction table at most two times. The

execution of Partition consists of two stages. In

the first stage, Partition algorithm divides the

table into a number of non-overlapping

partitions in terms of the allocated memory, and

the local frequent item sets for each partition

are computed. All the local frequent item sets

are merged at the end of first stage to generate

the candidates of frequent item sets. In the

second phase, another pass over table is

performed to acquire the support of the

candidates and the global frequent item sets can

be discovered. The useful property adopted in

Partition is that, every global frequent item sets

must be appeared in local frequent item sets of

at least one partition. Partition algorithm

utilizes vertical table representation of

transaction table and the support counting is

performed by recursive TID (transaction

identifier) list intersection. In the first phase,

Partition may generate many false positives, i.e.

the item sets are frequent locally but not

frequent globally. Therefore, it needs another

table scan to remove the false positives.

Zaki proposes another vertical mining algorithm

E-clat. Eclat decomposes the original search

space by a lattice-theoretic approach into smaller

sublattices, each of which is a group of item sets

with a common prefix (referred to as prefix-

based equivalence class). Depending on the

allocated memory size, Eclat can recursively

partition large classes into smaller ones until

each class can be maintained entirely in the

memory. Then, each class is processed

independently in the breath-first fashion to

compute the frequent item sets. Eclat processes

the sublattices sequentially one by one and does

not need post-processing overhead as Partition

algorithms. The main problem of Eclat is that

when the intermediate results of vertical TID

lists can become too large for memory,

especially in dense database, the performance of

Eclat starts to suffer. In order to solve the

problem, Zaki et al. devise a novel vertical data

representation called diffset, which keeps

differences in the TIDs of a candidate pattern

from its generating frequent patterns. A variation

(dEclat) of Eclat by diffset is presented, which

performs a depth-first search of the enumeration

tree. By the incorporation of diffset, the memory

requirement of dEclat is cut down drastically.

Deng et al. propose PPV algorithm to integrate

the advantages of vertical mining and

FPgrowth. PPV utilizes a coding prefix tree

structure PPC-tree to store the table. Each node

in PPC-tree is associated with pre-post code via

the pre-order and post-order traversal on the

PPC-tree. Each frequent item can be

represented by a node-list, i.e. the list of

PrePost code consisting pre-order code, post-

order code and the count of nodes registering

the frequent item. PPV fully uses candi-date

generation to discover frequent item sets, i.e.

the node-lists of the candidate item sets of

Journal of Engineering Sciences Vol 15 Issue 07,2024

ISSN:0377-9254 jespublication.com Page 605

length (k + 1) are generated by intersecting

node-lists of frequent item sets of length k, then

the frequent item sets can be reported. PPV can

achieve a high execution efficiency since (1)

the node-list is more compact than the vertical

structure, (2) the support counting is

transformed into the intersection of node-lists,

(3) the ancestor-descendant relationship of two

nodes can be verified efficiently by their

prepost codes. proposes PrePost to improve

PPV. The core difference between PrePost and

PPV is that PrePost can directly find frequent

item sets without generating candidates in some

cases by using the single path property of Nlist.

points out that node-list and N-list need to

encode each node of PPC-tree with both

preorder code and post-order code, thus they

are memory-consuming. A more efficient data

structure, Node Set, is adopted, which only

requires the pre-order code (or post-order code)

of each node. And based on Node Set, an

algorithm FIN is devised to compute frequent

item sets. The algorithm dFIN is presented to

improve FIN further. The algorithm dFIN uses

an enhanced Node Set, DiffNode Set, which is

combined by the idea of diffset. Aryabarzan et

al. find that the calculation of the difference

between DiffNode Set takes a long time on

some tables. They propose a new data structure,

NegNode Set, which also uses prefix tree.

NegNode Set employs a set-

bitmaprepresentation-based encoding model for

nodes. By using NegNode Set data structure,

negFIN is proposed. Three key advantages of

negFIN are: (1) employing bitwise operator to

generate new sets of nodes,

Pattern-Growth-Based Algorithms Pattern-

growth-based algorithms do not generate

candidate item sets explicitly but compress the

required information for frequent item sets in

specific data structure. The frequent item sets

can be acquired quickly with the notion of

projected databases, a subset of the original

transaction database relevant to the enumeration

node.

Agarwal et al. present DepthProject algorithm

to mine long item sets in databases.

DepthProject examines the nodes of the

lexicographic tree in depth-first order. The

examination process of a node refers to the

support counting of the candi-date extension of

the node. During the search, the projected

transaction sets are maintained for some of the

nodes on the path from the root to the node P

currently being extended. Normally, the

projected transaction sets only contain the

relevant part of the transaction database for

counting the support at the node P. In the

process of depth-first search, the projected

database can be reduced further at the children

of P and DepthProject can reuse the counting

work of its previous exploration. At the lower

levels of the lexicographic tree, a specialized

Journal of Engineering Sciences Vol 15 Issue 07,2024

ISSN:0377-9254 jespublication.com Page 606

counting technique called bucketing is used to

substantially improve the counting time.

Han et al. propose a FP-tree-based FPgrowth

algorithm to mine the complete set of frequent

patterns by pattern fragment growth. FP-tree

(frequent-pattern tree) is a compact prefix-based

trie structure to store the essential information

about frequent patterns. In each transaction,

only frequent length-1 items, which are sorted

with the descending order of support, are used

to construct the FP-tree. Then the FP-growth

algorithm works on FP-tree rather than on the

original database to mine frequent patterns. FP-

growth algorithm starts with a frequent length-1

pattern (initial suffix pattern), and the set of

frequent items cooccurring with the suffix

pattern is extracted as conditional-pattern base,

which is then constructed as conditional FP-

tree. With the current suffix pattern and the

conditional FPtree, if the conditional FP-tree is

not empty, FP-growth performs mining

recursively. The frequent patterns are acquired

by concatenating the new ones generated from

the conditional FP-tree and the suffix pattern.

FP-growth transforms the problem of finding

long frequent patterns to looking for shorter

ones and then concatenating the suffix. An

additional optimization is proposed for

FPgrowth, i.e. if all the nodes of the FP-tree lie

on a single path, the frequent patterns can be

generated by enumeration of all the

combinations of the sub-paths with the support

being the minimum support of the item sets

contained in the sub-path.

Grahne et al. find out that about 80 percent of

the CPU time in frequent item set mining is used

for traversing FP-trees. A special data structure,

FP-array, is devised. Given an item set of m

items, FP-array is a (m 1) (m 1) matrix, where

each element of the matrix corresponds to the

counter of an ordered pair of items. By the

special data structure, a new FPgrowth* is

proposed, which can reduce the traversal time on

FP-tree and speed up the FPgrowth method

significantly.

3. PROPOSED WORK

Proposes a novel pre-computation-based

frequent item set mining (PFIM) algorithm to

compute the frequent item sets quickly on

massive data. PFIM treats the transaction table

as two parts: the large old table storing historical

data and the relatively small new table storing

newly generated data. PFIM first pre-constructs

the quasi-frequent item sets on the old table

whose supports are above the lower-bound of the

practical support level. Given the specified

support threshold, PFIM can quickly return the

required frequent item sets on the table by

utilizing the quasi-frequent item sets. Following

methods are presented to improve the efficiency

of the system in mining data sets very fast.

Journal of Engineering Sciences Vol 15 Issue 07,2024

ISSN:0377-9254 jespublication.com Page 607

i. Intuitive Idea

ii. Pre-computation Operation

iii. Basic Process iv. Pruning

Operation v. Update

Operation

i. Intuitive Idea

Generally the number of frequent item sets is

very sensitive to the value of minsup. If the

value of minsup is too small, the number of

frequent item sets will be so large that the users

can become overwhelmed with too many

results and it is difficult for users to find the

really useful information from them. Therefore,

in this paper, we assume that there exists a

lower-bound for the value of minsup in

practical applications. During the time interval

between two consecutive merging, TO remains

unchanged and only T updates frequently.

Under such circumstances, given the frequent

item set mining with varying support

thresholds, why not we keep the pre-computed

item sets whose support values in TO are no

less than ! And only compute the required

frequent item sets considering the existence of

T. In this way, the work done for TO can be

reused for the entire frequent item set mining

in a long enough time.

ii. Pre-computation Operation

This part describes the pre-computation

operation to generate the required item sets on

the large old transaction table To whose

supports are no less than !. The required item

sets here are referred to as quasi-frequent item

sets, distinguishing from the frequent item sets

with the support threshold minsup specified by

users. Let tno be the number of transactions in

TO and tn be the number of transactions in T .

Since the size of TO is much large, usually

exceeds the size of the allocated memory.

Therefore, the process of pre-computing the

quasi-frequent item sets consists of two stages:

candidate generation and result refinement.

In the stage of candidate generation, we retrieve

the transactions in To sequentially and maintain

the retrieved transactions in an in-memory

buffer BU F , whose size is set according to the

size of the allocated memory. If BUF is full, we

can compute the local quasi-frequent item sets

in BUF by the current vertical frequent item set

mining algorithms. The quasi-frequent item sets

corresponding to current BUF are kept in a file.

Then we empty BU F and continue the

sequential scan for the next iteration. The

process is similarly executed until all

transactions in TO is retrieved and all local

quasi-frequent item sets are generated.

In the stage of result refinement, we first read

all the local quasi-frequent item sets into the

memory. Then another sequential scan on TO be

Journal of Engineering Sciences Vol 15 Issue 07,2024

ISSN:0377-9254 jespublication.com Page 608

performed to compute support count, i.e. the

absolute occurrence number, for each local

quasi-frequent item set.

 iii. Basic Process

Sequential scan on new table:

PFIM first retrieves the transactions in T1. ∀ t1 ∈T1, let t1 be the currently retrieved

transaction. ∀i∈t1, i is an item in t1, we

increase the count of i by 1 (initial value is 0).

Due to its relatively small size of T1 and the

simple computation, this sequential scan can be

executed quickly. We use an array cnt1 to keep

these counts. ∀i ∈ U, cnt1[i] is the count of

item i in T1, cnt1[i] = 0 if i does not appear in

any transaction in T1. The value of mas1 is the

maximum support count for all items in T1.

Sequential scan on quasi-frequent item sets

Then, PFIM begins to retrieve Fqf .∀t ∈ Fqf, let

t be the currently retrieved quasi-frequent item

set in Fqf. The quasi-frequent item sets in Fqf

can be divided into three classes:

(1) definitely belonging to the frequent

item sets,

(2) definitely not belonging to the frequent

item sets,

(3) Possibly belonging to the frequent item

sets.

Given|t.IS| = 1 and t.IS = {i}, if t.SUP+cnt1[i]

≥[n×minsup], t.IS is frequent, otherwise, t.IS is

not frequent. Given|t.IS|≥ 2, if t.SUP

≥[n×minsup], t.IS is frequent obviously,

otherwise, if t.SUP+mas1< [n×minsup], t.IS

certainly not a frequent item set. In other cases,

t may be a frequent item set, depending on the

transactions in T1, and PFIM maintains t in a

set

STCAD

Increase supports for item sets

When all quasi-frequent item sets are retrieved

already, PFIM needs to increase the support

counts of quasi-frequent item sets in STCAD by

their counts in T1, this can be done by a

sequential scan on T1., PFIM retrieves B

transactions from T1. For the current iteration,

the transactions maintained in memory are

transformed into vertical representation, i.e. each

item is associated with the list of identifiers

(TID) of transactions containing the item. ∀t ∈STCAD and t.IS = {ij1,ij2,...,ija}, the number

of transactions in BUF1 containing t.IS is |Ta =1

ijb .tlist|, where ijb.tlist is the TID list

corresponding to the item ijb.

iv. Pruning Operation

PFIM can reuse the pre-computation result of T0

and reduce the execution cost significantly. In

this part, we discuss how to improve PFIM

Journal of Engineering Sciences Vol 15 Issue 07,2024

ISSN:0377-9254 jespublication.com Page 609

further to speed up its execution by pruning

operation.

One main part of the cost in PFIM is to compute

the support counts of the item sets of STCAD in

T1. Therefore, if we can reduce the number of

item sets in STCAD in step 2, the counting cost

in T1 can be decreased. Use the maximum count

mas1 of the single item in T1 to determine the

support count range of the possible frequent item

sets. Obviously, if we can narrow down the

support count range, the size of STCAD can be

reduced. As described in the process of step 2,

PFIM can determine directly whether the

quasifrequent 1-itemsets in Fqf are frequent item

sets. Therefore, STCAD only needs to maintain

the quasi-frequent item sets which contain at

least two items. At the end of step2, PFIM

maintains the possible frequent item sets in

STCAD

v. Update Operation

When the size of T1 reaches a certain threshold,

for example, 5% of the size of TO, the

transactions in T1 and TO are merged. At this

point, the quasi-frequent item sets in Fqf needs

to be updated also. But the total re-construction

can be expensive. Therefore, in this paper, a new

an incremental update strategy is proposed,

which utilizes the existing information computed

already, to speed up the update operation.

The goal of the update operation is to generate

the quasi-frequent item sets on T given the

support level ω. The local quasi-frequent item

sets of TO are kept in Fqf, O, First we need to

add the occurrences of the local quasi-frequent

item sets of Fqf, O in T1. Then, the local

quasifrequent item sets in Fqf, O, are written into

the new file Fqf, the local quasi-frequent item

sets of T1 are kept in Fqf ,1. In order to avoid

duplicate computation, the local quasi-frequent

item sets in Fqf, 1, which have been contained in

Fqf, O, are removed before the support counting.

The support counts of the local quasi-frequent

item sets in Fqf, 1 are calculated by another scan

on TO and T1. The number of the item sets in

Fqf, 1 can be reduced significantly by the

containment checking in Fqf, O. The

computation cost of adding the support counts of

item sets in T1 and TO can be lowered

accordingly. Therefore, the incremental update

strategy can run much faster than the total

reconstruction strategy, which also is verified in

the experiments.

4. CONCLUSION

This paper thinks about the issue of figuring

incessant item sets on huge information. It is

discovered that the current algorithms can't

perform regular item set mining on huge

information effectively. This paper uses reusing

the work done beforehand and devises a

precalculation based PFIM calculation to rapidly

secure the incessant item sets on enormous

information. The exchange table comprises of

Journal of Engineering Sciences Vol 15 Issue 07,2024

ISSN:0377-9254 jespublication.com Page 610

two sections: the enormous old table and the

generally little new table. By the semi regular

item sets pre-registered on the old table, PFIM

can report the incessant item sets on huge

information effectively. Three pruning rules are

proposed in this paper to accelerate the execution

of PFIM. The gradual update technique is

introduced to re-build the semi continuous item

sets immediately when combining the old table

and the new table. The broad test results show

that PFIM has a huge performance advantage

over the current

calculations

5. REFERENCES

[1] A. Ceglar and J.F.
 Roddick,

“Association mining,” ACM Comput. Surv.,

38(2):5, 2006.

[2] H. Cheng, X. Yan, J. Han, and P.S. Yu,

“Direct discriminative pattern min-ing

for

effective classification,” in Proceedings of the

24th International Conference on Data

Engineering, April 7-12, 2008, pp. 169–178.

[3] H. Wang, W. Wang, J. Yang, and P.S.

Yu, “Clustering by pattern similarity in large data

sets,” in Proceedings of the 2002 ACM

SIGMOD Internation-al Conference on

Management of Data, June 3-6, 2002, pp. 394–

405.

[4] Z. Li and Y. Zhou, “Pr-miner:

automatically extracting implicit program-ming

rules and detecting violations in large software

code,” in Proceedings of the 10th European

Software Engineering Conference held jointly

with 13th ACM SIGSOFT International

Symposium on Foundations of Soft-ware

Engineering, September 5-9, 2005, pp. 306–315.

[5] J.T.L. Wang, M.J. Zaki, H. Toivonen,

and D.E. Shasha, editors. ”Data Mining in

Bioinformatics,” Springer, 2005.

[6] R. Agrawal, T. Imielinski, and A.N.

Swami, “Database mining: A perfor-

mance perspective,” IEEE Trans. Knowl.

Data Eng., vol. 5, no. 6, pp.914– 925,

1993.

[7] C.C. Aggarwal, “Data Mining - The

Textbook,” Springer, 2015.

[8] C.C. Aggarwal and J. Han, editors,

“Frequent Pattern Mining,” Springer,

2014.

[9] J. Han, H. Cheng, D. Xin, and X. Yan,

“Frequent pattern mining: current status

and future directions,” Data Min. Knowl.

Discov., vol. 15, no. 1, pp.55–86, 2007.

[10] R. Agrawal, T. Imielinski, and A.N.

Journal of Engineering Sciences Vol 15 Issue 07,2024

ISSN:0377-9254 jespublication.com Page 611

Swami, “Mining association rules between sets

of items in large databases,” in Proceedings of

the 1993 ACM SIGMOD International

Conference on Management of Data, 1993, pp.

207–216.

[11] R. Agrawal and R. Srikant, “Fast

algorithms for mining association rules

in large databases,” in VLDB’94,

Proceedings of 20th International

Conference on Very Large Data Bases,

1994, pp. 487–499.

Author’s Profiles

Ms.V.R. SWETHA currently working as
Assistant Professor in Audisankara College of
Engineering & Technology AUTONOMOUS
Gudur, Tirupati (Dt), Andhra Pradesh, India.

Ms.P.POOJITHA is pursuing MCA from Audisankara
College of Engineering & Technology
(AUTONOMOUS), Gudur, Affiliated to JNTUA .
 Andhra Pradesh, India.

Journal of Engineering Sciences Vol 15 Issue 07,2024

ISSN:0377-9254 jespublication.com Page 612

	1. INTRODUCTION
	2. LITERATURE SURVEY
	3. PROPOSED WORK
	Sequential scan on quasi-frequent item sets
	Increase supports for item sets
	4. CONCLUSION
	5. REFERENCES

