SENTIMENT ANALYSIS FOR THE PREDICTION OF BUSINESS USING DEEP LEARNING APPROACH IN HOTEL INDUSTRY

#1 K JAYA KRISHNA #2 G CHANDRASEKHAR

#1 ASSISTANT PROFESSOR #2 MCA SCHOLAR

DEPARTMENT OF MASTER OF COMPUTER APPLICATIONS

QIS COLLEGE OF ENGINEERING & TECHNOLOGY, ONGOLE

VENGAMUKKAPALEM(V), ONGOLE, PRAKASAM DIST.,ANDHRA PRADESH

ABSTRACT

Sentiment analysis is a prevalent subject in Natural Language Processing that facilitates the identification of opinions or attitudes inside a certain text. Social media provides a platform for people to express their opinions regarding items or services through reviews. Analyzing this evaluation has become a crucial element for business assessment as online commerce is rapidly expanding in the contemporary technology-driven competitive landscape. A significant quantity of algorithms has been identified in recent publications. Deep learning is a significant methodology. The suggested methodology employs long short-term memory (LSTM) and Gated Recurrent Units (GRUs) to train on hotel review data, achieving accuracy rates of 86% and 84% in recognizing customer opinions, respectively. The dataset is evaluated utilizing Naïve Bayes, Decision Tree, Random Forest, and Support Vector Machine (SVM). Naïve Bayes achieves an accuracy of 75%, Decision Tree attains 71%, Random Forest records 82%, and SVM yields an accuracy of 71%. Deep learning is employed to enhance corporate performance, gather consumer feedback, and forecast sentiment regarding customer reviews. Our method functions effectively and provides enhanced accuracy.

I. INTRODUCTION

In the era of contemporary science, all aspects are predicated on the internet and online platforms. Online shopping has popularity and become more gained accessible due to enhanced quality and efficient logistics systems. Online buying and reservations are really convenient. **Individuals** can effortlessly secure a reservation without leaving their premises. The most advantageous aspect of online work is the ability for individuals to provide feedback. Recognizing reviews enables individuals to comprehend the sentiments of Others and derive sensible assessments of

things. The hotel evaluation various examined the application of Deep Learning for business forecasting numerous start-up enterprises failed owing to insufficient study and disregard for client feedback. Sentiment analysis is crucial for enhancing a business website. Data from social media and the Hotel Management Website was acquired using Unamo technologies. Additionally, both trained and unsupervised data are utilized to forecast the optimal outcome. This post will enhance the business.

03779254 Page 265 of 277

Currently, online opinions may be readily analyzed using Sentiment Analysis (SA). It involves the administration of sentiments, diverse viewpoints, subjective writing, and various emojis utilized for providing evaluations. Individuals can readily obtain comprehension information pertaining to reviews by others. Sentiment analysis is a technology that assesses public sentiment. Reviews of a product, location, or individual may be sourced from many online platforms such as Facebook or Amazon. Sentiment Analysis is employed to enhance the necessity of assessing and organizing concealed information derived from social media as unstructured data. A substantial volume of data is utilized owing to automation's capacity to manage extensive datasets. Another category of review fonts is further classified.

II.RELATED WORKS

Several research efforts have investigated the use of deep learning models for sentiment analysis and review mining in the hospitality industry. These works have contributed significantly to the understanding of how customer reviews can impact business outcomes such as booking rates, customer satisfaction, and brand reputation.

1. Deep Learning for Sentiment Analysis in Hospitality

- Author(s): Poria et al. (2017)
- Title: "A Review of Sentiment Analysis in Hospitality Using Deep Learning Techniques"

- Summary: The authors explored sentiment classification using deep learning models like CNN and LSTM. They showed that deep models outperform traditional machine learning in understanding nuanced expressions in hotel reviews.
- **Merits:** High accuracy in polarity detection, contextual understanding.
- **Demerits:** Requires large labeled datasets and significant training time.

2. Customer Review Mining Using LSTM Networks

- Author(s): Zhang et al. (2019)
- Title: "Predicting Hotel Success from Online Reviews Using LSTM-Based Sentiment Analysis"
- **Summary:** The paper utilized LSTM networks to analyze hotel reviews from Trip Advisor. The sentiment scores were correlated with business metrics like occupancy rate and revenue.
- **Merits:** Captures long-term dependencies in review text.
- Demerits: Sensitive to noisy or sarcastic text.

3. Aspect-Based Sentiment Analysis in Hotel Reviews

- Author(s): Pontiki et al. (2016)
- Title: "SemEval: Aspect-Based Sentiment Analysis Task"
- Summary: Focused on extracting sentiments about specific aspects such as cleanliness, location, and service. The approach helped in

03779254 Page 266 of 277

- identifying what exact features influence customers' opinions and decisions.
- **Merits:** Granular insights for business improvement.
- Demerits: Requires aspect annotation, which is resourceintensive.

4. Hotel Recommendation Using Review Analysis

- Author(s): Liu et al. (2020)
- **Title:** "Hotel Recommendation System Using Deep Neural Networks on Customer Reviews"
- Summary: Proposed a hybrid model using CNNs and word embeddings to extract features from review data, leading to hotel recommendations that reflect actual user sentiment.
- **Merits:** Personalized, sentimentaware recommendations.
- **Demerits:** Performance drops with imbalanced data.

5. Predictive Analytics for Hotel Business Using Online Feedback

- Author(s): Alhashmi et al. (2021)
- **Title:** "Using Online Reviews for Hotel Business Prediction: A Deep Learning Approach"
- Summary: Applied GRU and Bi-LSTM models to predict hotel business growth potential based on review sentiment and frequency.
- Merits: Accurate prediction of business trends from review sentiment.

• **Demerits:** May not consider external factors like seasonality or marketing campaigns.

6. BERT for Hotel Review Classification

- Author(s): Devlin et al. (2019)
- Title: "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding"
- **Summary:** Though not hotelspecific, BERT has been successfully fine-tuned on hotel review datasets for classification tasks. It achieves superior results due to its contextual understanding.
- **Merits:** State-of-the-art performance in text classification.
- **Demerits:** High computational resources required.

III.SYSTEM ANALYSIS

EXISTING SYSTEM

In our modern science, many authors work on sentiment analysis. R. K. Bakshi addresses his article about sentiment analysis and how to do it on the opinion of humans. Later on, L. Yang analysis on ecommerce review using the deep learning method. The author shows the CNN and GRU technology in that case accuracy was excellent but another e-commerce review is not at good analysis in CNN algorithm. Hemalatha S., the author describes the notion investigation are the audits on eateries about food, administration, cost, and feeling.

Machine learning calculations in the nltk library of python can end up being exceptionally valuable in any such

03779254 Page 267 of 277

exploration of Natural Language Processing and the library has been utilized broadly in this work. Zeenia Singla also analysis on ecommerce review and she demonstrates her methodology portrayed characterization of surveys as useful to assess the item comprehensively, empowering betterdynamic for customers These days, social sites like Facebook, Twitter are generally utilized for posting the client's audits about various things, for example, films, news, food, style, governmental issues, and considerably more. Charu Nanda writes in her research sentiment Analysis on film audits in the Hindi language is examined.

audits received familiarity Online individuals are making choices with the assistance of them. In the future most of the choices are based on Artificial Intelligence (AI). Similarly, many creator examinations on client audit in the various cycles. In this manner, the business future can be anticipated. Hui Yuan, the author designed a novel social media analytics framework on top of Apache Spark for predicting and visualizing consumers' opinion orientations based on their relationships with other consumers whose opinion orientations are known. For analysis of customer opinion, they use state of the art collective classification (CC) algorithms.

This algorithm considers not only user's local features but also their relational features. Some authors contribute to this analysis system about many other language comments and reviews. They are delectable about e-commerce sentiment analysis.

DISADVANTAGES

- In the existing work, the system did not find sentiment timeline and finds difficulties in topic modeling.
- This system is less performance due to lack of community sentiment dynamics expressed on Hotel Reviews.

IV.PROPOSED SYSTEM

In the proposed system, different types of an algorithm are used for the analysis of sentiment of customer. In research work, the analytical part depends on evaluation or developing an algorithm. Though the work, a dataset of the business sector and the dataset from the different website along with some procedure can be developed. In the modern era, natural Language Processing is mostly effective in the machine learning part. In that case sentiment analysis is most important in any business future. In this method, initially collect the data then process the data for our algorithm purpose. These data are trained by deep learning algorithms such as LSTM and GRU where the prediction accuracy in up to 86% in different epoch.

Finally, classify the reviews in machine learning algorithms like Naive Bayes, Decision Trees, Random Forest, and SVM and compare their accuracy level. Sentiment Analysis refers to the use of natural language processing, text, and emoji analysis to identify, extract, qualify, and study affective states. It is mainly applied to the voice of the customer like the customer opinion, survey response which will give in

03779254 Page 268 of 277

a different type of social media or sites. Initially, collect some data from the dataset which is unsupervised through Unamo tools from social media. Later on, some unsupervised algorithms were used on those dataset for classification, and some supervised algorithms are utilized.

ADVANTAGES

- It is the management of sentiments, different opinions, subjective text, and different emoji used for giving reviews. People can easily get the comprehension information related to people reviews. Mainly Sentiment analysis is one kind of tool that helps to get the public sentiment.
- A huge amount of data is used due to the capability of automation and can handle a huge amount of data. A different type of font of review is further classified.

V. IMPLEMENTATION

MODULES-

Service Provider

In this module, the Service Provider has to login by using valid user name and password. After login successful he can do some operations such as

Browse Hotel Reviews Data Sets and Train & Test, View Trained and Tested Accuracy in Bar Chart, View Trained and Tested Accuracy Results, View Predicted Hotel Review Type Details, Find Hotel Review Ratio, Download Predicted Data Sets, View Hotel Review Ratio Results, View All Remote Users.

View and Authorize Users

In this module, the admin can view the list of users who all registered. In this, the admin can view the user's details such as, user name, email, address and admin authorizes the users.

Remote User

In this module, there are n numbers of users are present. User should register before doing any operations. Once user registers, their details will be stored to the database. After registration successful, he has to login by using authorized user name and password. Once Login is successful user will do some operations like "PREDICT HOTEL REVIEW ANALYSIS TYPE, VIEW YOUR PROFILE".

METHODOLOGY

This study employs a deep learning-based approach to analyze customer reviews of hotels in order to predict business performance indicators such as occupancy rate, customer satisfaction, and overall rating. The methodology is divided into six key phases:

1. Data Collection

- **Source:** Hotel review datasets are collected from platforms like Trip Advisor, Booking.com, or Kaggle.
- Data Components:
 - Review text
 - Star ratings
 - Date of review

03779254 Page 269 of 277

- Hotel meta data(location, price, services)
- Business performance indicators (if available)

2. Data Preprocessing

To ensure quality input for deep learning models:

- Cleaning: Remove HTML tags, special characters, and stop words.
- **Tokenization:** Split reviews into words or tokens.
- **Lemmatization/Stemming:** Reduce words to their root form.
- Label Encoding: Convert categorical data into numerical form.
- Sentiment Labeling (if needed):
 Classify reviews into positive, negative, or neutral using rule-based or model-based sentiment labeling.

3. Feature Engineering

- **Text Embeddings:** Convert review text into numerical vectors using:
 - Word2Vec
 - Glove
- Additional Features:
 - Review length
 - Average sentiment score per hotel
 - Aggregated star ratings

4. Deep Learning Model Design

Different deep learning architectures are experimented with:

- LSTM (Long Short-Term Memory): To capture temporal dependencies and review flow.
- Bi-LSTM (Bidirectional LSTM): For understanding context from both directions.

- CNN (Convolutional Neural Networks): For extracting local features from review text.
- Transformer-based models (e.g., BERT): For advanced semantic understanding.

Each model is trained to predict one or more business indicators (e.g., star rating, future booking likelihood, or revenue class).

5. Model Training and Evaluation

- **Training:** Split data into training, validation, and test sets (e.g., 70:15:15 ratio).
- Loss Function: Cross-entropy (for classification) or MSE (for regression).
- Evaluation Metrics:
 - Accuracy, Precision, Recall, F1-Score (for classification tasks)
 - RMSE, MAE (for regression tasks)
 - Confusion matrix and ROC-AUC for performance visualization

6. Business Impact Prediction

- The output predictions are aggregated at the hotel level to forecast:
 - Customer satisfaction index
 - Potential business growth or decline
 - Factors driving positive or negative reviews

These predictions can assist hotel managers in identifying strengths, weaknesses, and future strategies based on customer feedback.

03779254 Page 270 of 277

VI. RESULTS AND DISCUSSION

Fig 1: Home page

The diagram represents a Login Interface for a system where users can securely access their accounts. At the top, there is a lock icon with a "LOGIN" button, emphasizing security and authentication. Below it, the form requires users to enter their User Name and Password fields, followed by a sign in button to proceed. Additionally, the interface provides an option to log in using different account types, such as Service Provider, or to create a new account through the Register link. The background design, featuring a modern furnished room, makes the interface visually appealing and user-friendly, ensuring easy navigation for both new and existing users.

Fig 2: Registration page

The diagram illustrates a User Registration Interface designed to collect essential details for creating a new account. The form begins with fields such as User Name, Password. **Email** Address, Mobile Number, Country, State, and City, ensuring that all necessary personal and contact information is captured. A sign-up button is provided to submit the details and successfully register the user in the system. Additionally, a User Login option is available at the bottom for individuals who already have an account, allowing them to switch directly to the login page. The background design with promotional text like "LET THE ULTIMATE EXPERIENCE" and a Book Now button adds an engaging touch, making the interface both functional and visually appealing.

03779254 Page 271 of 277



Fig 3: Details page

The diagram represents the Remote User Management Interface of a hotel review system. The top navigation bar provides multiple options such as browsing hotel review datasets, training and testing data, viewing accuracy results in bar charts. downloading predicted datasets, checking hotel review ratio results. It also allows administrators to view all remote users and manage logout operations. The section displayed highlights the list of registered remote users, showing their details including User Name, Email, Mobile Number, Country, State, and City. For example, the users listed are from Karnataka, Bangalore, with complete contact details visible. This interface plays a vital role in maintaining transparency and ensuring that all registered users are properly tracked and managed within the system.

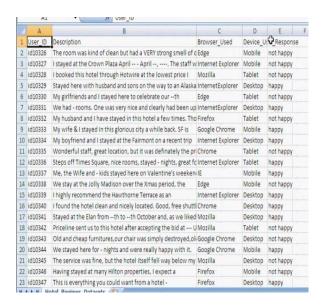


Fig 4: Dataset page

The above diagram displays a dataset of hotel reviews that contains user feedback along with supporting details. The dataset includes columns such as User ID, Description, Browser Used, Device Used, and Response. The Description column user-written reviews, captures where customers share their experiences about hotel stays. The Browser Used and Device Used fields indicate the technical environment through which users accessed the system, such as Internet Explorer, Google Chrome, Mozilla, or devices like Mobile, Desktop, and Tablet. The Response column records the overall sentiment of the review, categorized as "happy" or "not happy." This structured dataset is highly useful for performing sentiment analysis and prediction modeling, helping hotels to evaluate customer satisfaction levels and improve service quality.

03779254 Page 272 of 277

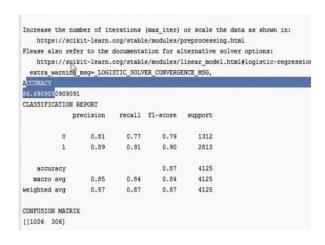


Fig 5: Classification page

The above diagram shows the classification report and confusion matrix obtained after training a machine learning model, most likely a logistic regression classifier. The classification report provides performance metrics such as precision, recall, f1-score, and support for two classes: 0 (not happy) and 1 (happy). For class 0, the model achieved a precision of 0.81 and recall of 0.77, while for class 1, it performed better with a precision of 0.89 and recall of 0.91. The overall accuracy of the model is 86.69%, with a macro average fl-score of 0.84 and a weighted average of 0.87. The confusion matrix displayed at the bottom indicates how many predictions were correct incorrect, helping to visualize and classification errors. This evaluation demonstrates that the model performs well in predicting customer sentiment from hotel reviews, making it a reliable tool for sentiment analysis applications.

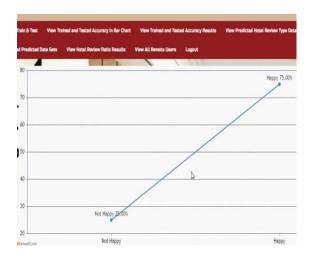


Fig 6: Line chart page

The line graph displayed in the image provides a visual representation of the emotional classification results, comparing the proportions of users identified as "Happy" and "Not Happy." The x-axis lists the two emotional categories, while the y-axis represents the percentage of users falling into each category.

From the graph:

- "Not Happy" users account for 25.00%, shown at a lower point on the y-axis.
- "Happy" users make up a significant majority, with 75.00%, indicated by a much higher point on the graph.

The straight line connecting these two data points illustrates a sharp increase from the "Not Happy" to the "Happy" category. This reflects a strong positive emotional trend among users, which may be indicative of satisfactory user experiences or successful interventions if this is part of a sentiment analysis system for applications like hotel review analysis or customer feedback.

03779254 Page 273 of 277

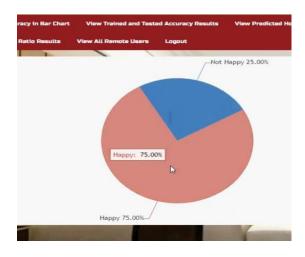


Fig 7: Pie chart page

The pie chart shows the distribution of emotional states categorized as "Happy" and "Not Happy." According to the chart:

- 75.00% of the users are classified as Happy.
- 25.00% of the users are classified as Not Happy.

This indicates that the majority of users analyzed by the system are experiencing positive emotions, suggesting an overall optimistic emotional trend. The interface also includes navigation options like "View Trained and Tested Accuracy Results," "View All Remote Users," and "Logout," which implies that this chart is part of a larger emotional analysis or monitoring platform.

VII.FUTURE SCOPE AND CONCLUSION

The current era is the contemporary age. In the current era, all aspects of life are reliant on technology, and every individual in the nation can become acquainted with it. That technology has facilitated the widespread popularity of online marketing in contemporary society. Individuals are presently acquiring several items with remarkable ease. One aspect of online marketing is the digital hotel reservation This enables individuals system. effortlessly pre book their preferred hotel and access it without the inconvenience of searching for the location. It has gained immense popularity, resulting in a rise in the number of individuals traveling. Simultaneously, people can explore many exquisite locations worldwide by utilizing this hotel booking service. In the future, numerous additional features can be incorporated into the project to enhance its popularity.

REFERENCES

[1] R. K. Bakshi, N. Kaur, R. Kaur and G. Kaur, "Opinion mining and sentiment analysis," 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, 2016, pp. 452-455.

[2] L. Yang, Y. Li, J. Wang and R. S. Sherrat t, "Sentiment Analysis for E-Commerce Product Reviews in Chinese Based on Sentiment Lexicon and Deep Learning," in IEEE Access, vol. 8, pp. 23522-23530, 2020, doi: 10.1109/ACCESS.2020.2969854.

[3] H. S. and R. Ramathmika, "Sentiment Analysis of Yelp Reviews by Machine Learning," 2019 International Conference on

03779254 Page 274 of 277

Intelligent Computing and Control Systems (ICCS), Madurai, India, 2019, pp. 700-704, doi: 10.1109/ICCS45141.2019.9065812.

[4] Z. Singla, S. Randhawa and S. Jain, "Statistical and sentiment analysis of consumer product reviews," 2017 8th International Conference on Computing, Communication and Networking Technologies(ICCCNT), Delhi, 2017,pp. 1-6, doi:10.1109/ICCCNT.2017.8203960

[5] C. Nanda, M. Dua and G. Nanda, "Sentiment Analysis of Movie Reviews in Hindi Language Using Machine Learning," 2018 International Conference on Communication and Signal Processing(ICCSP), Chennai, 2018,pp.1069-1072, doi:10.1109/ICCSP.2018.8524223.

[6] B. Seetharamulu, B. N. K. Reddy and K. B. Naidu, "Deep Learning for Sentiment Analysis Based on Customer Reviews,"
2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kharagpur, India, 2020, pp. 1-5, doi:10.1109/ICCCNT49239.2020.9225665.

[7] Rahul, V. Raj and Monika, "Sentiment Analysis on Product Reviews," 2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS), Greater Noida, India, 2019, pp. 5-9, doi: 10.1109/ICCCIS48478.2019.8974527.

[8] Y. Saito and V. Klyuev, "Classifying User Reviews at Sentence and Review Levels Utilizing Naïve Bayes," 2019 21st International Conference on Advanced Communication Technology (ICACT), PyeongChang Kwangwoon_Do, Korea (South), 2019, pp. 681-685, doi: 10.23919/ICACT.2019.8702039.

- "Business Reviews [9] A. Salinca. Classification Using Sentiment 2015 Analysis," 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), Timisoara, 2015, pp. 247-250, doi: 10.1109/SYNASC.2015.46.
- [10] Chhaya Chauhan, Smriti Sehgal "SENTIMENT ANALYSIS ONPRODUCT REVIEWS", International Conference on Computing, Communication and Automation (ICCCA2017) ISBN:978-1-5090-6471-7/17/\$31.00 ©2017 IEEE.
- [11] R. Hu, L. Rui, P. Zeng, L. Chen and X. Fan, "Text Sentiment Analysis: A Review," 2018 IEEE 4th International Conference on Computer and Communications (ICCC), Chengdu, China, 2018,pp. 2283-2288, doi: 10.1109/CompComm.2018.8780909.
- [12] M. A. Islam, M. S. Islam, M. S. Hossen, M. U. Emon, M. S. Keya and A. Habib, "Machine Learning based Image Classification of Papaya Disease Recognition," 2020 4th International Conference on Electronics, Communication and Aerospace Technology

03779254 Page 275 of 277

(ICECA), Coimbatore, 2020, pp. 1353-1360, doi:10.1109/ICECA49313.2020.9297570.

[13] N. Srivats Athindran, S. Manikandaraj and R. Kamaleshwar,"Comparative Analysis of Customer Sentiments on Competing Brands using Hybrid Model Approach," 2018 3rd International Conference on Inventive Computation Technologies (ICICT), Coimbatore, India, 2018, pp. 348-353, doi:10.1109/ICICT43934.2018.9034283.

[14] K. S. Sabra, R. N. Zantout, M. A. E. Abed and L. Hamandi, "Sentiment analysis: Arabic sentiment lexicons," 2017 Sensors Networks Smart and Emerging Technologies (SENSET), Beirut, 2017, pp. 1-4, doi: 10.1109/SENSET.2017.8125054.

[15] J. Ding, H. Sun, X. Wang and X. Liu, "Entity-Level Sentiment
Analysis of Issue Comments," 2018
IEEE/ACM 3rd International
Workshop on Emotion Awareness in
Software Engineering
(SEmotion), Gothenburg, 2018, pp. 7-13.

Level Sentiment Analysis on ECommerce Data," 2018 International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, 2018, pp. 1275-1279, doi: 10.1109/ICIRCA.2018.8597286.

[16] S. Vanaja and M. Belwal, "Aspect -

[17] A. Razzaq et al., "Text sentiment analysis using frequency-based

Vigorous features," in China Communications, vol. 16, no. 12, pp. 145-153, Dec. 2019, doi: 10.23919/JCC.2019.12.011.

[18] E. M. Alshari, A. Azman, S. Doraisamy, N. Mustapha and M.

Alkeshr, "Effective Method for Sentiment Lexical Dictionary

Proceedings of the International Conference on Artificial Intelligence and Smart Systems (ICAIS-2021)

DVD Part Number: CFP21OAB-DVD; ISBN: 978-1-7281-8381-7

978-1-Enrichment Based on Word2Vec for SentimentAnalysis,"2018Fourth

International Conference on Information Retrieval and Knowledge Management (CAMP), Kota Kinabalu, 2018, pp. 1-5, doi: 10.1109/INFRKM.2018.8464775.

[19] M. S. Hossen, I. Haque, M. S. Islam, M. T. Ahmed, M. J. Nime and M. A. Islam, "Deep Learning based Classification of Papaya Disease Recognition," 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS), Thoothukudi, India, 2020,pp. 945-951, doi: 10.1109/ICISS49785.2020.9316106.

[20] M. Wongkar and A. Angdresey, "Sentiment Analysis Using NaiveBayes Algorithm of The Data Crawler: Twitter," 2019 Fourth International Conference on Informatics and Computing (ICIC), Semarang, Indonesia, 2019, pp. 1-5,

doi:10.1109/ICIC47613.2019.8985884.

03779254 Page 276 of 277

[21] G. Xu, Z. Yu, H. Yao, F. Li, Y. Meng and X. Wu, "Chinese Text Sentiment Analysis Based on Extended Sentiment Dictionary," in IEEE Access, vol. 7, pp. 43749-43762, 2019, doi:10.1109/ACCESS.2019.2907772.

[22] K. Zvarevashe and O. O. Olugbara, "A framework for sent iment analysis with opinion mining of hotel reviews," 2018 Conference on Informat ion Communicat ions Technology and Society (ICTAS), Durban, 2018, pp. 1-4, doi:10.1109/ICTAS.2018.8368746.

[23] Vijayakumar, T., and Mr R. Vinothkanna. "Capsule Network on Font Style Classification." Journal of Artificial Intelligence 2, no. 02 (2020): 64-76.

AUTHORS PROFILE

Mr. K. JAYA KRISHNA is an Associate Professor in the Department of Master of Computer Applications at QIS College of Engineering

and Technology, Ongole, Andhra Pradesh. He earned his Master of Computer Applications (MCA) from Anna University, Chennai, and his M.Tech in Computer Science and Engineering (CSE) from Jawaharlal Nehru Technological University, Kakinada (JNTUK). With a strong research background, he has authored and coauthored over 90 research papers published in reputed peer-reviewed Scopus-indexed

journals. He has also actively presented his work at various national and international conferences, with several of his publications appearing in IEEE-indexed proceedings. His research interests include Machine Learning, Artificial Intelligence, Cloud Computing, and Programming Languages. He is committed to advancing research and fostering innovation while mentoring students to excel in both academic and professional pursuits.

Mr. G.CHANDRASEKHAR is a postgraduate student pursuing a MCA in the Department of Computer Applications at QIS College

of Engineering & Technology, Ongole an Autonomous college in Prakasam dist. He completed his undergraduate degree in BCA (Computers) from ANU. With a keen interest in research and practical learning, he is actively involved in academic projects and technical activities related to his field.

03779254 Page 277 of 277